FOBOS অ্যালগরিদম অনুযায়ী '*var' এবং '*accum'-এ স্পারস আপডেট এন্ট্রি।
যে সারিগুলির জন্য আমাদের গ্রেড আছে, আমরা var আপডেট করি এবং নিম্নরূপ accum করি: $$accum += grad grad$$$$prox_v = var$$$$prox_v -= lr grad (1 / sqrt(accum))$$$$var = sign(prox_v)/(1+lrl2) max{|prox_v|-lrl1,0}$$
নেস্টেড ক্লাস
ক্লাস | SparseApplyProximalAdagrad.Options | SparseApplyProximalAdagrad এর জন্য ঐচ্ছিক বৈশিষ্ট্য |
ধ্রুবক
স্ট্রিং | OP_NAME | এই অপের নাম, টেনসরফ্লো কোর ইঞ্জিন দ্বারা পরিচিত |
পাবলিক পদ্ধতি
আউটপুট <T> | আউটপুট হিসাবে () টেনসরের প্রতীকী হ্যান্ডেল ফেরত দেয়। |
স্ট্যাটিক <T TType প্রসারিত করে > SparseApplyProximalAdagrad <T> | |
আউটপুট <T> | আউট () "var" এর মতোই। |
স্ট্যাটিক SparseApplyProximalAdagrad.Options | ইউজ লকিং (বুলিয়ান ইউজ লকিং) |
উত্তরাধিকারসূত্রে প্রাপ্ত পদ্ধতি
ধ্রুবক
সর্বজনীন স্ট্যাটিক চূড়ান্ত স্ট্রিং OP_NAME
এই অপের নাম, টেনসরফ্লো কোর ইঞ্জিন দ্বারা পরিচিত
পাবলিক পদ্ধতি
সর্বজনীন আউটপুট <T> হিসাবে আউটপুট ()
টেনসরের প্রতীকী হ্যান্ডেল ফেরত দেয়।
TensorFlow অপারেশনের ইনপুট হল অন্য TensorFlow অপারেশনের আউটপুট। এই পদ্ধতিটি একটি সিম্বলিক হ্যান্ডেল পেতে ব্যবহৃত হয় যা ইনপুটের গণনার প্রতিনিধিত্ব করে।
পাবলিক স্ট্যাটিক স্পারসঅ্যাপ্লাইপ্রক্সিমালঅ্যাডাগ্রাড <T> তৈরি করুন ( স্কোপ স্কোপ, অপারেন্ড <T> var, Operand <T> accum, Operand <T> lr, Operand <T> l1, Operand <T> l2, Operand <T> grad, Operand <? প্রসারিত TNumber > সূচক, বিকল্প... বিকল্প)
একটি নতুন SparseApplyProximalAdagrad অপারেশন মোড়ানো একটি ক্লাস তৈরি করার কারখানার পদ্ধতি।
পরামিতি
সুযোগ | বর্তমান সুযোগ |
---|---|
var | একটি পরিবর্তনশীল() থেকে হওয়া উচিত। |
accum | একটি পরিবর্তনশীল() থেকে হওয়া উচিত। |
lr | শেখার হার। একটি স্কেলার হতে হবে। |
l1 | L1 নিয়মিতকরণ। একটি স্কেলার হতে হবে। |
l2 | L2 নিয়মিতকরণ। একটি স্কেলার হতে হবে। |
স্নাতক | গ্রেডিয়েন্ট। |
সূচক | var এবং accum-এর প্রথম মাত্রায় সূচকগুলির একটি ভেক্টর। |
বিকল্প | ঐচ্ছিক বৈশিষ্ট্য মান বহন করে |
রিটার্নস
- SparseApplyProximalAdagrad এর একটি নতুন উদাহরণ
পাবলিক স্ট্যাটিক স্পারসঅ্যাপ্লাইপ্রক্সিমালঅ্যাডাগ্রাড। বিকল্প ব্যবহার লকিং (বুলিয়ান ইউজ লকিং)
পরামিতি
লকিং ব্যবহার করুন | যদি সত্য হয়, var এবং accum tensors আপডেট করা একটি লক দ্বারা সুরক্ষিত হবে; অন্যথায় আচরণটি অনির্ধারিত, তবে কম বিরোধ প্রদর্শন করতে পারে। |
---|
FOBOS অ্যালগরিদম অনুযায়ী '*var' এবং '*accum'-এ স্পারস আপডেট এন্ট্রি।
যে সারিগুলির জন্য আমাদের গ্রেড আছে, আমরা var আপডেট করি এবং নিম্নরূপ accum করি: $$accum += grad grad$$$$prox_v = var$$$$prox_v -= lr grad (1 / sqrt(accum))$$$$var = sign(prox_v)/(1+lrl2) max{|prox_v|-lrl1,0}$$
নেস্টেড ক্লাস
ক্লাস | SparseApplyProximalAdagrad.Options | SparseApplyProximalAdagrad এর জন্য ঐচ্ছিক বৈশিষ্ট্য |
ধ্রুবক
স্ট্রিং | OP_NAME | এই অপের নাম, টেনসরফ্লো কোর ইঞ্জিন দ্বারা পরিচিত |
পাবলিক পদ্ধতি
আউটপুট <T> | আউটপুট হিসাবে () টেনসরের প্রতীকী হ্যান্ডেল ফেরত দেয়। |
স্ট্যাটিক <T TType প্রসারিত করে > SparseApplyProximalAdagrad <T> | |
আউটপুট <T> | আউট () "var" এর মতোই। |
স্ট্যাটিক SparseApplyProximalAdagrad.Options | ইউজ লকিং (বুলিয়ান ইউজ লকিং) |
উত্তরাধিকারসূত্রে প্রাপ্ত পদ্ধতি
ধ্রুবক
সর্বজনীন স্ট্যাটিক চূড়ান্ত স্ট্রিং OP_NAME
এই অপের নাম, টেনসরফ্লো কোর ইঞ্জিন দ্বারা পরিচিত
পাবলিক পদ্ধতি
সর্বজনীন আউটপুট <T> হিসাবে আউটপুট ()
টেনসরের প্রতীকী হ্যান্ডেল ফেরত দেয়।
TensorFlow অপারেশনের ইনপুট হল অন্য TensorFlow অপারেশনের আউটপুট। এই পদ্ধতিটি একটি সিম্বলিক হ্যান্ডেল পেতে ব্যবহৃত হয় যা ইনপুটের গণনার প্রতিনিধিত্ব করে।
পাবলিক স্ট্যাটিক স্পারসঅ্যাপ্লাইপ্রক্সিমালঅ্যাডাগ্রাড <T> তৈরি করুন ( স্কোপ স্কোপ, অপারেন্ড <T> var, Operand <T> accum, Operand <T> lr, Operand <T> l1, Operand <T> l2, Operand <T> grad, Operand <? প্রসারিত TNumber > সূচক, বিকল্প... বিকল্প)
একটি নতুন SparseApplyProximalAdagrad অপারেশন মোড়ানো একটি ক্লাস তৈরি করার কারখানার পদ্ধতি।
পরামিতি
সুযোগ | বর্তমান সুযোগ |
---|---|
var | একটি পরিবর্তনশীল() থেকে হওয়া উচিত। |
accum | একটি পরিবর্তনশীল() থেকে হওয়া উচিত। |
lr | শেখার হার। একটি স্কেলার হতে হবে। |
l1 | L1 নিয়মিতকরণ। একটি স্কেলার হতে হবে। |
l2 | L2 নিয়মিতকরণ। একটি স্কেলার হতে হবে। |
স্নাতক | গ্রেডিয়েন্ট। |
সূচক | var এবং accum-এর প্রথম মাত্রায় সূচকগুলির একটি ভেক্টর। |
বিকল্প | ঐচ্ছিক বৈশিষ্ট্য মান বহন করে |
রিটার্নস
- SparseApplyProximalAdagrad এর একটি নতুন উদাহরণ
পাবলিক স্ট্যাটিক স্পারসঅ্যাপ্লাইপ্রক্সিমালঅ্যাডাগ্রাড। বিকল্প ব্যবহার লকিং (বুলিয়ান ইউজ লকিং)
পরামিতি
লকিং ব্যবহার করুন | যদি সত্য হয়, var এবং accum tensors আপডেট করা একটি লক দ্বারা সুরক্ষিত হবে; অন্যথায় আচরণটি অনির্ধারিত, তবে কম বিরোধ প্রদর্শন করতে পারে। |
---|