ConfigProto คลาสสุดท้ายสาธารณะ
Session configuration parameters. The system picks appropriate values for fields that are not set.
tensorflow.ConfigProto
คลาสที่ซ้อนกัน
ระดับ | ConfigProto.Builder | Session configuration parameters. | |
ระดับ | ConfigProto ทดลอง | Everything inside Experimental is subject to change and is not subject to API stability guarantees in https://www.tensorflow.org/guide/version_compat. | |
อินเตอร์เฟซ | ConfigProto.ExperimentalOrBuilder |
ค่าคงที่
วิธีการสาธารณะ
บูลีน | containsDeviceCount (คีย์สตริง) Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. |
บูลีน | เท่ากับ (วัตถุ obj) |
บูลีน | getAllowSoftPlacement () Whether soft placement is allowed. |
คลัสเตอร์ดีฟ | getClusterDef () Optional list of all workers to use in this session. |
ClusterDefOrBuilder | getClusterDefOrBuilder () Optional list of all workers to use in this session. |
ConfigProto แบบคงที่ | |
ConfigProto | |
com.google.protobuf.Descriptors.Descriptor แบบคงที่ขั้นสุดท้าย | รับคำอธิบาย () |
แมป<สตริง จำนวนเต็ม> | รับอุปกรณ์นับ () ใช้ getDeviceCountMap() แทน |
ภายใน | getDeviceCountCount () Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. |
แมป<สตริง จำนวนเต็ม> | getDeviceCountMap () Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. |
ภายใน | getDeviceCountOrDefault (คีย์สตริง, int defaultValue) Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. |
ภายใน | getDeviceCountOrThrow (คีย์สตริง) Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. |
สตริง | getDeviceFilters (ดัชนี int) When any filters are present sessions will ignore all devices which do not match the filters. |
com.google.protobuf.ByteString | getDeviceFiltersBytes (ดัชนี int) When any filters are present sessions will ignore all devices which do not match the filters. |
ภายใน | getDeviceFiltersCount () When any filters are present sessions will ignore all devices which do not match the filters. |
com.google.protobuf.ProtocolStringList | getDeviceFiltersList () When any filters are present sessions will ignore all devices which do not match the filters. |
ConfigProto ทดลอง | รับการทดลอง () .tensorflow.ConfigProto.Experimental experimental = 16; |
ConfigProto.ExperimentalOrBuilder | รับExperimentalOrBuilder () .tensorflow.ConfigProto.Experimental experimental = 16; |
ตัวเลือก GPU | getGpuOptions () Options that apply to all GPUs. |
GPUOptionsOrBuilder | getGpuOptionsOrBuilder () Options that apply to all GPUs. |
ตัวเลือกกราฟ | getGraphOptions () Options that apply to all graphs. |
GraphOptionsOrBuilder | getGraphOptionsOrBuilder () Options that apply to all graphs. |
ภายใน | getInterOpParallelismThreads () Nodes that perform blocking operations are enqueued on a pool of inter_op_parallelism_threads available in each process. |
ภายใน | getIntraOpParallelismThreads () The execution of an individual op (for some op types) can be parallelized on a pool of intra_op_parallelism_threads. |
บูลีน | getIsolateSessionState () If true, any resources such as Variables used in the session will not be shared with other sessions. |
บูลีน | getLogDevicePlacement () Whether device placements should be logged. |
ยาว | getOperationTimeoutInMs () Global timeout for all blocking operations in this session. |
ภายใน | getPlacementPeriod () Assignment of Nodes to Devices is recomputed every placement_period steps until the system warms up (at which point the recomputation typically slows down automatically). |
RPCตัวเลือก | getRpcOptions () Options that apply when this session uses the distributed runtime. |
RPCOptionsOrBuilder | getRpcOptionsOrBuilder () Options that apply when this session uses the distributed runtime. |
ภายใน | |
ThreadPoolOptionProto | getSessionInterOpThreadPool (ดัชนี int) This option is experimental - it may be replaced with a different mechanism in the future. |
ภายใน | getSessionInterOpThreadPoolCount () This option is experimental - it may be replaced with a different mechanism in the future. |
รายการ < ThreadPoolOptionProto > | getSessionInterOpThreadPoolList () This option is experimental - it may be replaced with a different mechanism in the future. |
ThreadPoolOptionProtoOrBuilder | getSessionInterOpThreadPoolOrBuilder (ดัชนี int) This option is experimental - it may be replaced with a different mechanism in the future. |
รายการ<? ขยาย ThreadPoolOptionProtoOrBuilder > | getSessionInterOpThreadPoolOrBuilderList () This option is experimental - it may be replaced with a different mechanism in the future. |
บูลีน | getShareClusterDevicesInSession () When true, WorkerSessions are created with device attributes from the full cluster. |
สุดท้าย com.google.protobuf.UnknownFieldSet | |
บูลีน | getUsePerSessionThreads () If true, use a new set of threads for this session rather than the global pool of threads. |
บูลีน | hasClusterDef () Optional list of all workers to use in this session. |
บูลีน | มีการทดลอง () .tensorflow.ConfigProto.Experimental experimental = 16; |
บูลีน | hasGpuOptions () Options that apply to all GPUs. |
บูลีน | hasGraphOptions () Options that apply to all graphs. |
บูลีน | hasRpcOptions () Options that apply when this session uses the distributed runtime. |
ภายใน | แฮชโค้ด () |
บูลีนสุดท้าย | |
ConfigProto.Builder แบบคงที่ | ตัวสร้างใหม่ () |
ConfigProto.Builder แบบคงที่ | newBuilder (ต้นแบบ ConfigProto ) |
ConfigProto.Builder | |
ConfigProto แบบคงที่ | parseDelimitedFrom (อินพุต InputStream) |
ConfigProto แบบคงที่ | parseDelimitedFrom (อินพุตสตรีม com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
ConfigProto แบบคงที่ | parseFrom (ข้อมูล ByteBuffer, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
ConfigProto แบบคงที่ | parseFrom (com.google.protobuf.CodedInputStream อินพุต) |
ConfigProto แบบคงที่ | parseFrom (ข้อมูลไบต์ [], com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
ConfigProto แบบคงที่ | parseFrom (ข้อมูล ByteBuffer) |
ConfigProto แบบคงที่ | parseFrom (อินพุต com.google.protobuf.CodedInputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
ConfigProto แบบคงที่ | parseFrom (ข้อมูล com.google.protobuf.ByteString) |
ConfigProto แบบคงที่ | parseFrom (อินพุต InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
ConfigProto แบบคงที่ | parseFrom (ข้อมูล com.google.protobuf.ByteString, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
คงที่ | |
ConfigProto.Builder | toBuilder () |
เป็นโมฆะ | writeTo (เอาต์พุต com.google.protobuf.CodedOutputStream) |
วิธีการสืบทอด
ค่าคงที่
รอบชิงชนะเลิศแบบคงที่สาธารณะ ALLOW_SOFT_PLACEMENT_FIELD_NUMBER
ค่าคงที่: 7
สาธารณะคงสุดท้าย int CLUSTER_DEF_FIELD_NUMBER
ค่าคงที่: 14
รอบชิงชนะเลิศแบบคงที่สาธารณะ int DEVICE_COUNT_FIELD_NUMBER
ค่าคงที่: 1
สาธารณะขั้นสุดท้ายคงที่ int DEVICE_FILTERS_FIELD_NUMBER
ค่าคงที่: 4
รอบชิงชนะเลิศแบบคงที่สาธารณะ int EXPERIMENTAL_FIELD_NUMBER
ค่าคงที่: 16
int สุดท้ายแบบคงที่สาธารณะ GPU_OPTIONS_FIELD_NUMBER
ค่าคงที่: 6
สาธารณะคงสุดท้าย int GRAPH_OPTIONS_FIELD_NUMBER
ค่าคงที่: 10
สาธารณะคงที่สุดท้าย int INTER_OP_PARALLELISM_THREADS_FIELD_NUMBER
ค่าคงที่: 5
int สุดท้ายคงที่สาธารณะ INTRA_OP_PARALLELISM_THREADS_FIELD_NUMBER
ค่าคงที่: 2
สาธารณะคงสุดท้าย int ISOLATE_SESSION_STATE_FIELD_NUMBER
ค่าคงที่: 15
int สุดท้ายแบบคงที่สาธารณะ LOG_DEVICE_PLACEMENT_FIELD_NUMBER
ค่าคงที่: 8
รอบชิงชนะเลิศแบบคงที่สาธารณะ int OPERATION_TIMEOUT_IN_MS_FIELD_NUMBER
ค่าคงที่: 11
รอบชิงชนะเลิศแบบคงที่สาธารณะ int PLACEMENT_PERIOD_FIELD_NUMBER
ค่าคงที่: 3
สาธารณะคงสุดท้าย int RPC_OPTIONS_FIELD_NUMBER
ค่าคงที่: 13
สาธารณะคงสุดท้าย int SESSION_INTER_OP_THREAD_POOL_FIELD_NUMBER
ค่าคงที่: 12
int สุดท้ายแบบคงที่สาธารณะ SHARE_CLUSTER_DEVICES_IN_SESSION_FIELD_NUMBER
ค่าคงที่: 17
int สุดท้ายคงที่สาธารณะ USE_PER_SESSION_THREADS_FIELD_NUMBER
ค่าคงที่: 9
วิธีการสาธารณะ
บูลีนสาธารณะ ประกอบด้วยDeviceCount (คีย์สตริง)
Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. If a particular device type is not found in the map, the system picks an appropriate number.
map<string, int32> device_count = 1;
บูลีนสาธารณะ เท่ากับ (Object obj)
บูลีนสาธารณะ getAllowSoftPlacement ()
Whether soft placement is allowed. If allow_soft_placement is true, an op will be placed on CPU if 1. there's no GPU implementation for the OP or 2. no GPU devices are known or registered or 3. need to co-locate with reftype input(s) which are from CPU.
bool allow_soft_placement = 7;
ClusterDef สาธารณะ getClusterDef ()
Optional list of all workers to use in this session.
.tensorflow.ClusterDef cluster_def = 14;
ClusterDefOrBuilder สาธารณะ getClusterDefOrBuilder ()
Optional list of all workers to use in this session.
.tensorflow.ClusterDef cluster_def = 14;
สาธารณะคงที่สุดท้าย com.google.protobuf.Descriptors.Descriptor getDescriptor ()
สาธารณะ int getDeviceCountCount ()
Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. If a particular device type is not found in the map, the system picks an appropriate number.
map<string, int32> device_count = 1;
แผนที่สาธารณะ <String, Integer> getDeviceCountMap ()
Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. If a particular device type is not found in the map, the system picks an appropriate number.
map<string, int32> device_count = 1;
สาธารณะ int getDeviceCountOrDefault (คีย์สตริง, int defaultValue)
Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. If a particular device type is not found in the map, the system picks an appropriate number.
map<string, int32> device_count = 1;
int สาธารณะ getDeviceCountOrThrow (คีย์สตริง)
Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. If a particular device type is not found in the map, the system picks an appropriate number.
map<string, int32> device_count = 1;
สตริงสาธารณะ getDeviceFilters (ดัชนี int)
When any filters are present sessions will ignore all devices which do not match the filters. Each filter can be partially specified, e.g. "/job:ps" "/job:worker/replica:3", etc.
repeated string device_filters = 4;
สาธารณะ com.google.protobuf.ByteString getDeviceFiltersBytes (ดัชนี int)
When any filters are present sessions will ignore all devices which do not match the filters. Each filter can be partially specified, e.g. "/job:ps" "/job:worker/replica:3", etc.
repeated string device_filters = 4;
สาธารณะ int getDeviceFiltersCount ()
When any filters are present sessions will ignore all devices which do not match the filters. Each filter can be partially specified, e.g. "/job:ps" "/job:worker/replica:3", etc.
repeated string device_filters = 4;
สาธารณะ com.google.protobuf.ProtocolStringList getDeviceFiltersList ()
When any filters are present sessions will ignore all devices which do not match the filters. Each filter can be partially specified, e.g. "/job:ps" "/job:worker/replica:3", etc.
repeated string device_filters = 4;
ConfigProto สาธารณะ ทดลอง getExperimental ()
.tensorflow.ConfigProto.Experimental experimental = 16;
ConfigProto.ExperimentalOrBuilder สาธารณะ getExperimentalOrBuilder ()
.tensorflow.ConfigProto.Experimental experimental = 16;
GPUOptions สาธารณะ getGpuOptions ()
Options that apply to all GPUs.
.tensorflow.GPUOptions gpu_options = 6;
GPUOptionsOrBuilder สาธารณะ getGpuOptionsOrBuilder ()
Options that apply to all GPUs.
.tensorflow.GPUOptions gpu_options = 6;
GraphOptions สาธารณะ getGraphOptions ()
Options that apply to all graphs.
.tensorflow.GraphOptions graph_options = 10;
GraphOptionsOrBuilder สาธารณะ getGraphOptionsOrBuilder ()
Options that apply to all graphs.
.tensorflow.GraphOptions graph_options = 10;
int สาธารณะ getInterOpParallelismThreads ()
Nodes that perform blocking operations are enqueued on a pool of inter_op_parallelism_threads available in each process. 0 means the system picks an appropriate number. Negative means all operations are performed in caller's thread. Note that the first Session created in the process sets the number of threads for all future sessions unless use_per_session_threads is true or session_inter_op_thread_pool is configured.
int32 inter_op_parallelism_threads = 5;
int สาธารณะ getIntraOpParallelismThreads ()
The execution of an individual op (for some op types) can be parallelized on a pool of intra_op_parallelism_threads. 0 means the system picks an appropriate number. If you create an ordinary session, e.g., from Python or C++, then there is exactly one intra op thread pool per process. The first session created determines the number of threads in this pool. All subsequent sessions reuse/share this one global pool. There are notable exceptions to the default behavior describe above: 1. There is an environment variable for overriding this thread pool, named TF_OVERRIDE_GLOBAL_THREADPOOL. 2. When connecting to a server, such as a remote `tf.train.Server` instance, then this option will be ignored altogether.
int32 intra_op_parallelism_threads = 2;
บูลีนสาธารณะ getIsolateSessionState ()
If true, any resources such as Variables used in the session will not be shared with other sessions. However, when clusterspec propagation is enabled, this field is ignored and sessions are always isolated.
bool isolate_session_state = 15;
บูลีนสาธารณะ getLogDevicePlacement ()
Whether device placements should be logged.
bool log_device_placement = 8;
สาธารณะ getOperationTimeoutInMs ยาว ()
Global timeout for all blocking operations in this session. If non-zero, and not overridden on a per-operation basis, this value will be used as the deadline for all blocking operations.
int64 operation_timeout_in_ms = 11;
สาธารณะ getParserForType ()
สาธารณะ int getPlacementPeriod ()
Assignment of Nodes to Devices is recomputed every placement_period steps until the system warms up (at which point the recomputation typically slows down automatically).
int32 placement_period = 3;
RPCOptions สาธารณะ getRpcOptions ()
Options that apply when this session uses the distributed runtime.
.tensorflow.RPCOptions rpc_options = 13;
RPCOptionsOrBuilder สาธารณะ getRpcOptionsOrBuilder ()
Options that apply when this session uses the distributed runtime.
.tensorflow.RPCOptions rpc_options = 13;
สาธารณะ int getSerializedSize ()
ThreadPoolOptionPro สาธารณะ เพื่อรับSessionInterOpThreadPool (ดัชนี int)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
int สาธารณะ getSessionInterOpThreadPoolCount ()
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
รายการสาธารณะ < ThreadPoolOptionProto > getSessionInterOpThreadPoolList ()
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
ThreadPoolOptionProtoOrBuilder สาธารณะ getSessionInterOpThreadPoolOrBuilder (ดัชนี int)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
รายการสาธารณะ<? ขยาย ThreadPoolOptionProtoOrBuilder > getSessionInterOpThreadPoolOrBuilderList ()
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
บูลีนสาธารณะ getShareClusterDevicesInSession ()
When true, WorkerSessions are created with device attributes from the full cluster. This is helpful when a worker wants to partition a graph (for example during a PartitionedCallOp).
bool share_cluster_devices_in_session = 17;
สาธารณะสุดท้าย com.google.protobuf.UnknownFieldSet getUnknownFields ()
บูลีนสาธารณะ getUsePerSessionThreads ()
If true, use a new set of threads for this session rather than the global pool of threads. Only supported by direct sessions. If false, use the global threads created by the first session, or the per-session thread pools configured by session_inter_op_thread_pool. This option is deprecated. The same effect can be achieved by setting session_inter_op_thread_pool to have one element, whose num_threads equals inter_op_parallelism_threads.
bool use_per_session_threads = 9;
hasClusterDef บูลีนสาธารณะ ()
Optional list of all workers to use in this session.
.tensorflow.ClusterDef cluster_def = 14;
บูลีนสาธารณะ มีการทดลอง ()
.tensorflow.ConfigProto.Experimental experimental = 16;
hasGpuOptions บูลีนสาธารณะ ()
Options that apply to all GPUs.
.tensorflow.GPUOptions gpu_options = 6;
hasGraphOptions บูลีนสาธารณะ ()
Options that apply to all graphs.
.tensorflow.GraphOptions graph_options = 10;
บูลีนสาธารณะ hasRpcOptions ()
Options that apply when this session uses the distributed runtime.
.tensorflow.RPCOptions rpc_options = 13;
สาธารณะ int hashCode ()
บูลีนสุดท้ายสาธารณะ isInitialized ()
ConfigProto แบบคงที่สาธารณะ parseDelimitedFrom (อินพุต InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
ขว้าง
IOข้อยกเว้น |
---|
ConfigProto แบบคงที่สาธารณะ แยกวิเคราะห์ (ข้อมูล ByteBuffer, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
ขว้าง
ProtocolBufferException ไม่ถูกต้อง |
---|
ConfigProto parseFrom แบบคงที่สาธารณะ (อินพุต com.google.protobuf.CodedInputStream)
ขว้าง
IOข้อยกเว้น |
---|
ConfigProto แบบคงที่สาธารณะ แยกวิเคราะห์ (ข้อมูลไบต์ [], com.google.protobuf.ExtensionRegistryLite extensionRegistry)
ขว้าง
ProtocolBufferException ไม่ถูกต้อง |
---|
ConfigProto แบบคงที่สาธารณะ แยกวิเคราะห์ (ข้อมูล ByteBuffer)
ขว้าง
ProtocolBufferException ไม่ถูกต้อง |
---|
ConfigProto parseFrom แบบคงที่สาธารณะ (อินพุต com.google.protobuf.CodedInputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
ขว้าง
IOข้อยกเว้น |
---|
ConfigProto แบบคงที่สาธารณะ แยกวิเคราะห์ (ข้อมูล com.google.protobuf.ByteString)
ขว้าง
ProtocolBufferException ไม่ถูกต้อง |
---|
ConfigProto แบบคงที่สาธารณะ แยกวิเคราะห์ (อินพุต InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
ขว้าง
IOข้อยกเว้น |
---|
ConfigProto แบบคงที่สาธารณะ แยกวิเคราะห์ (ข้อมูล com.google.protobuf.ByteString, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
ขว้าง
ProtocolBufferException ไม่ถูกต้อง |
---|
สาธารณะคงที่ ตัวแยกวิเคราะห์ ()
โมฆะสาธารณะ writeTo (com.google.protobuf.CodedOutputStream เอาต์พุต)
ขว้าง
IOข้อยกเว้น |
---|