GPUOptions.Experimental de clase final estática pública
Protobuf tipo tensorflow.GPUOptions.Experimental
Clases anidadas
clase | GPUOptions.Experimental.Builder | Protobuf tipo tensorflow.GPUOptions.Experimental | |
clase | GPUOptions.Experimental.VirtualDevices | Configuration for breaking down a visible GPU into multiple "virtual" devices. | |
interfaz | GPUOptions.Experimental.VirtualDevicesOrBuilder |
Constantes
Métodos públicos
booleano | es igual (Objeto obj) |
Cadena | getCollectiveRingOrder () If non-empty, defines a good GPU ring order on a single worker based on device interconnect. |
com.google.protobuf.ByteString | getCollectiveRingOrderBytes () If non-empty, defines a good GPU ring order on a single worker based on device interconnect. |
Opciones de GPU estáticas.Experimental | |
GPUOptions.Experimental | |
com.google.protobuf.Descriptors.Descriptor estático final | |
entero | getKernelTrackerMaxBytes () If kernel_tracker_max_bytes = n > 0, then a tracking event is inserted after every series of kernels allocating a sum of memory >= n. |
entero | getKernelTrackerMaxInterval () Parameters for GPUKernelTracker. |
entero | getKernelTrackerMaxPending () If kernel_tracker_max_pending > 0 then no more than this many tracking events can be outstanding at a time. |
entero | getNumDevToDevCopyStreams () If > 1, the number of device-to-device copy streams to create for each GPUDevice. |
entero | |
booleano | getTimestampedAllocator () If true then extra work is done by GPUDevice and GPUBFCAllocator to keep track of when GPU memory is freed and when kernels actually complete so that we can know when a nominally free memory chunk is really not subject to pending use. |
com.google.protobuf.UnknownFieldSet final | |
booleano | getUseUnifiedMemory () If true, uses CUDA unified memory for memory allocations. |
GPUOptions.Experimental.VirtualDevices | getVirtualDevices (índice int) The multi virtual device settings. |
entero | getVirtualDevicesCount () The multi virtual device settings. |
Lista< GPUOptions.Experimental.VirtualDevices > | getVirtualDevicesList () The multi virtual device settings. |
GPUOptions.Experimental.VirtualDevicesOrBuilder | getVirtualDevicesOrBuilder (índice int) The multi virtual device settings. |
Lista<? extiende GPUOptions.Experimental.VirtualDevicesOrBuilder > | getVirtualDevicesOrBuilderList () The multi virtual device settings. |
entero | código hash () |
booleano final | |
GPUOptions.Experimental.Builder estático | newBuilder ( GPUOptions.Prototipo experimental) |
GPUOptions.Experimental.Builder estático | |
GPUOptions.Experimental.Builder | |
Opciones de GPU estáticas.Experimental | parseDelimitedFrom (entrada de InputStream) |
Opciones de GPU estáticas.Experimental | parseDelimitedFrom (entrada de InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
Opciones de GPU estáticas.Experimental | parseFrom (datos de ByteBuffer) |
Opciones de GPU estáticas.Experimental | parseFrom (entrada com.google.protobuf.CodedInputStream, com.google.protobuf.ExtensionRegistryLite extensiónRegistry) |
Opciones de GPU estáticas.Experimental | parseFrom (datos de ByteBuffer, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
Opciones de GPU estáticas.Experimental | parseFrom (entrada com.google.protobuf.CodedInputStream) |
Opciones de GPU estáticas.Experimental | parseFrom (byte[] datos, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
Opciones de GPU estáticas.Experimental | parseFrom (datos com.google.protobuf.ByteString) |
Opciones de GPU estáticas.Experimental | parseFrom (entrada de InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
Opciones de GPU estáticas.Experimental | parseFrom (com.google.protobuf.ByteString datos, com.google.protobuf.ExtensionRegistryLite extensiónRegistry) |
estático | analizador () |
GPUOptions.Experimental.Builder | |
vacío | writeTo (salida de com.google.protobuf.CodedOutputStream) |
Métodos heredados
Constantes
int final estático público COLLECTIVE_RING_ORDER_FIELD_NUMBER
Valor constante: 4
int final estático público KERNEL_TRACKER_MAX_BYTES_FIELD_NUMBER
Valor constante: 8
público estático final int KERNEL_TRACKER_MAX_INTERVAL_FIELD_NUMBER
Valor constante: 7
público estático final int KERNEL_TRACKER_MAX_PENDING_FIELD_NUMBER
Valor constante: 9
int final estático público NUM_DEV_TO_DEV_COPY_STREAMS_FIELD_NUMBER
Valor constante: 3
int final estático público TIMESTAMPED_ALLOCATOR_FIELD_NUMBER
Valor constante: 5
int final estático público USE_UNIFIED_MEMORY_FIELD_NUMBER
Valor constante: 2
público estático final int VIRTUAL_DEVICES_FIELD_NUMBER
Valor constante: 1
Métodos públicos
público booleano es igual (Objeto obj)
Cadena pública getCollectiveRingOrder ()
If non-empty, defines a good GPU ring order on a single worker based on device interconnect. This assumes that all workers have the same GPU topology. Specify as a comma-separated string, e.g. "3,2,1,0,7,6,5,4". This ring order is used by the RingReducer implementation of CollectiveReduce, and serves as an override to automatic ring order generation in OrderTaskDeviceMap() during CollectiveParam resolution.
string collective_ring_order = 4;
público com.google.protobuf.ByteString getCollectiveRingOrderBytes ()
If non-empty, defines a good GPU ring order on a single worker based on device interconnect. This assumes that all workers have the same GPU topology. Specify as a comma-separated string, e.g. "3,2,1,0,7,6,5,4". This ring order is used by the RingReducer implementation of CollectiveReduce, and serves as an override to automatic ring order generation in OrderTaskDeviceMap() during CollectiveParam resolution.
string collective_ring_order = 4;
público estático final com.google.protobuf.Descriptors.Descriptor getDescriptor ()
público int getKernelTrackerMaxBytes ()
If kernel_tracker_max_bytes = n > 0, then a tracking event is inserted after every series of kernels allocating a sum of memory >= n. If one kernel allocates b * n bytes, then one event will be inserted after it, but it will count as b against the pending limit.
int32 kernel_tracker_max_bytes = 8;
público int getKernelTrackerMaxInterval ()
Parameters for GPUKernelTracker. By default no kernel tracking is done. Note that timestamped_allocator is only effective if some tracking is specified. If kernel_tracker_max_interval = n > 0, then a tracking event is inserted after every n kernels without an event.
int32 kernel_tracker_max_interval = 7;
público int getKernelTrackerMaxPending ()
If kernel_tracker_max_pending > 0 then no more than this many tracking events can be outstanding at a time. An attempt to launch an additional kernel will stall until an event completes.
int32 kernel_tracker_max_pending = 9;
público int getNumDevToDevCopyStreams ()
If > 1, the number of device-to-device copy streams to create for each GPUDevice. Default value is 0, which is automatically converted to 1.
int32 num_dev_to_dev_copy_streams = 3;
público getParserForType ()
público int getSerializedSize ()
getTimestampedAllocator booleano público ()
If true then extra work is done by GPUDevice and GPUBFCAllocator to keep track of when GPU memory is freed and when kernels actually complete so that we can know when a nominally free memory chunk is really not subject to pending use.
bool timestamped_allocator = 5;
público final com.google.protobuf.UnknownFieldSet getUnknownFields ()
getUseUnifiedMemory booleano público ()
If true, uses CUDA unified memory for memory allocations. If per_process_gpu_memory_fraction option is greater than 1.0, then unified memory is used regardless of the value for this field. See comments for per_process_gpu_memory_fraction field for more details and requirements of the unified memory. This option is useful to oversubscribe memory if multiple processes are sharing a single GPU while individually using less than 1.0 per process memory fraction.
bool use_unified_memory = 2;
GPUOptions.Experimental.VirtualDevices públicas getVirtualDevices (índice int)
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
público int getVirtualDevicesCount ()
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
Lista pública< GPUOptions.Experimental.VirtualDevices > getVirtualDevicesList ()
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
GPUOptions.Experimental.VirtualDevicesOrBuilder público getVirtualDevicesOrBuilder (índice int)
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
Lista pública<? extiende GPUOptions.Experimental.VirtualDevicesOrBuilder > getVirtualDevicesOrBuilderList ()
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
código hash int público ()
público final booleano isInitialized ()
GPUOptions estáticas públicas. Análisis experimentalDelimitedFrom (entrada de InputStream)
Lanza
IOExcepción |
---|
GPUOptions estáticas públicas.Experimental parseDelimitedFrom (entrada de InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Lanza
IOExcepción |
---|
GPUOptions estáticas públicas. Análisis experimental de (datos ByteBuffer)
Lanza
Excepción de buffer de protocolo no válido |
---|
GPUOptions.Experimental estático público parseFrom (entrada com.google.protobuf.CodedInputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Lanza
IOExcepción |
---|
GPUOptions.Experimental estático público parseFrom (datos ByteBuffer, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Lanza
Excepción de buffer de protocolo no válido |
---|
GPUOptions.Experimental estático público parseFrom (entrada com.google.protobuf.CodedInputStream)
Lanza
IOExcepción |
---|
GPUOptions estáticas públicas. Análisis experimental de (byte[] datos, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Lanza
Excepción de buffer de protocolo no válido |
---|
GPUOptions.Experimental estático público parseFrom (datos com.google.protobuf.ByteString)
Lanza
Excepción de buffer de protocolo no válido |
---|
GPUOptions.Experimental estático público parseFrom (entrada de InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Lanza
IOExcepción |
---|
GPUOptions.Experimental estático público parseFrom (datos com.google.protobuf.ByteString, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Lanza
Excepción de buffer de protocolo no válido |
---|
estática pública analizador ()
escritura vacía pública (salida de com.google.protobuf.CodedOutputStream)
Lanza
IOExcepción |
---|