عمومی استاتیک کلاس نهایی GPUOptions.Experimental
نوع Protobuf tensorflow.GPUOptions.Experimental
کلاس های تو در تو
کلاس | GPUOptions.Experimental.Builder | نوع Protobuf tensorflow.GPUOptions.Experimental | |
کلاس | GPUOptions.Experimental.VirtualDevices | Configuration for breaking down a visible GPU into multiple "virtual" devices. | |
رابط کاربری | GPUOptions.Experimental.VirtualDevicesOrBuilder |
ثابت ها
بین المللی | COLLECTIVE_RING_ORDER_FIELD_NUMBER | |
بین المللی | KERNEL_TRACKER_MAX_BYTES_FIELD_NUMBER | |
بین المللی | KERNEL_TRACKER_MAX_INTERVAL_FIELD_NUMBER | |
بین المللی | KERNEL_TRACKER_MAX_PENDING_FIELD_NUMBER | |
بین المللی | NUM_DEV_TO_DEV_COPY_STREAMS_FIELD_NUMBER | |
بین المللی | TIMESTAMPED_ALLOCATOR_FIELD_NUMBER | |
بین المللی | USE_UNIFIED_MEMORY_FIELD_NUMBER | |
بین المللی | VIRTUAL_DEVICES_FIELD_NUMBER |
روش های عمومی
بولی | برابر است (object obj) |
رشته | getCollectiveRingOrder () If non-empty, defines a good GPU ring order on a single worker based on device interconnect. |
com.google.protobuf.ByteString | getCollectiveRingOrderBytes () If non-empty, defines a good GPU ring order on a single worker based on device interconnect. |
استاتیک GPUOptions.Experimental | |
GPUOptions.Experimental | |
نهایی static com.google.protobuf.Descriptors.Descriptor | |
بین المللی | getKernelTrackerMaxBytes () If kernel_tracker_max_bytes = n > 0, then a tracking event is inserted after every series of kernels allocating a sum of memory >= n. |
بین المللی | getKernelTrackerMaxInterval () Parameters for GPUKernelTracker. |
بین المللی | getKernelTrackerMaxPending () If kernel_tracker_max_pending > 0 then no more than this many tracking events can be outstanding at a time. |
بین المللی | getNumDevToDevCopyStreams () If > 1, the number of device-to-device copy streams to create for each GPUDevice. |
بین المللی | |
بولی | getTimestampedAllocator () If true then extra work is done by GPUDevice and GPUBFCAllocator to keep track of when GPU memory is freed and when kernels actually complete so that we can know when a nominally free memory chunk is really not subject to pending use. |
com.google.protobuf.UnknownFieldSet نهایی | |
بولی | getUseUnifiedMemory () If true, uses CUDA unified memory for memory allocations. |
GPUOptions.Experimental.VirtualDevices | getVirtualDevices (Int index) The multi virtual device settings. |
بین المللی | getVirtualDevicesCount () The multi virtual device settings. |
فهرست < GPUOptions.Experimental.VirtualDevices > | getVirtualDevicesList () The multi virtual device settings. |
GPUOptions.Experimental.VirtualDevicesOrBuilder | getVirtualDevicesOrBuilder (int index) The multi virtual device settings. |
لیست<? GPUOptions.Experimental.VirtualDevicesOrBuilder > را گسترش می دهد | getVirtualDevicesOrBuilderList () The multi virtual device settings. |
بین المللی | کد هش () |
بولی نهایی | |
استاتیک GPUOptions.Experimental.Builder | newBuilder (نمونه اولیه GPUOptions.Experimental ) |
استاتیک GPUOptions.Experimental.Builder | newBuilder () |
GPUOptions.Experimental.Builder | |
استاتیک GPUOptions.Experimental | parseDelimitedFrom (ورودی جریان ورودی) |
استاتیک GPUOptions.Experimental | parseDelimitedFrom (ورودی InputStream، com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
استاتیک GPUOptions.Experimental | parseFrom (داده های ByteBuffer) |
استاتیک GPUOptions.Experimental | parseFrom (ورودی com.google.protobuf.CodedInputStream، com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
استاتیک GPUOptions.Experimental | parseFrom (دادههای ByteBuffer، com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
استاتیک GPUOptions.Experimental | parseFrom (ورودی com.google.protobuf.CodedInputStream) |
استاتیک GPUOptions.Experimental | parseFrom (بایت[] داده، com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
استاتیک GPUOptions.Experimental | parseFrom (داده های com.google.protobuf.ByteString) |
استاتیک GPUOptions.Experimental | parseFrom (ورودی InputStream، com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
استاتیک GPUOptions.Experimental | parseFrom (دادههای com.google.protobuf.ByteString، com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
ایستا | تجزیه کننده () |
GPUOptions.Experimental.Builder | toBuilder () |
باطل | writeTo (خروجی com.google.protobuf.CodedOutputStream) |
روش های ارثی
ثابت ها
نهایی استاتیک عمومی COLLECTIVE_RING_ORDER_FIELD_NUMBER
ارزش ثابت: 4
نهایی استاتیک عمومی KERNEL_TRACKER_MAX_BYTES_FIELD_NUMBER
مقدار ثابت: 8
نهایی استاتیک عمومی KERNEL_TRACKER_MAX_INTERVAL_FIELD_NUMBER
ارزش ثابت: 7
نهایی استاتیک عمومی KERNEL_TRACKER_MAX_PENDING_FIELD_NUMBER
مقدار ثابت: 9
نهایی استاتیک عمومی NUM_DEV_TO_DEV_COPY_STREAMS_FIELD_NUMBER
مقدار ثابت: 3
نهایی استاتیک عمومی TIMESTAMPED_ALLOCATOR_FIELD_NUMBER
مقدار ثابت: 5
ورودی نهایی ثابت عمومی USE_UNIFIED_MEMORY_FIELD_NUMBER
مقدار ثابت: 2
VIRTUAL_DEVICES_FIELD_NUMBER نهایی استاتیک عمومی
ارزش ثابت: 1
روش های عمومی
بولین عمومی برابر است (Object Obj)
رشته عمومی getCollectiveRingOrder ()
If non-empty, defines a good GPU ring order on a single worker based on device interconnect. This assumes that all workers have the same GPU topology. Specify as a comma-separated string, e.g. "3,2,1,0,7,6,5,4". This ring order is used by the RingReducer implementation of CollectiveReduce, and serves as an override to automatic ring order generation in OrderTaskDeviceMap() during CollectiveParam resolution.
string collective_ring_order = 4;
عمومی com.google.protobuf.ByteString getCollectiveRingOrderBytes ()
If non-empty, defines a good GPU ring order on a single worker based on device interconnect. This assumes that all workers have the same GPU topology. Specify as a comma-separated string, e.g. "3,2,1,0,7,6,5,4". This ring order is used by the RingReducer implementation of CollectiveReduce, and serves as an override to automatic ring order generation in OrderTaskDeviceMap() during CollectiveParam resolution.
string collective_ring_order = 4;
public static final com.google.protobuf.Descriptors.Descriptor getDescriptor ()
عمومی int getKernelTrackerMaxBytes ()
If kernel_tracker_max_bytes = n > 0, then a tracking event is inserted after every series of kernels allocating a sum of memory >= n. If one kernel allocates b * n bytes, then one event will be inserted after it, but it will count as b against the pending limit.
int32 kernel_tracker_max_bytes = 8;
عمومی int getKernelTrackerMaxInterval ()
Parameters for GPUKernelTracker. By default no kernel tracking is done. Note that timestamped_allocator is only effective if some tracking is specified. If kernel_tracker_max_interval = n > 0, then a tracking event is inserted after every n kernels without an event.
int32 kernel_tracker_max_interval = 7;
عمومی int getKernelTrackerMaxPending ()
If kernel_tracker_max_pending > 0 then no more than this many tracking events can be outstanding at a time. An attempt to launch an additional kernel will stall until an event completes.
int32 kernel_tracker_max_pending = 9;
عمومی int getNumDevToDevCopyStreams ()
If > 1, the number of device-to-device copy streams to create for each GPUDevice. Default value is 0, which is automatically converted to 1.
int32 num_dev_to_dev_copy_streams = 3;
عمومی getParserForType ()
عمومی int getSerializedSize ()
بولی عمومی getTimestampedAllocator ()
If true then extra work is done by GPUDevice and GPUBFCAllocator to keep track of when GPU memory is freed and when kernels actually complete so that we can know when a nominally free memory chunk is really not subject to pending use.
bool timestamped_allocator = 5;
عمومی نهایی com.google.protobuf.UnknownFieldSet getUnknownFields ()
بولی عمومی getUseUnifiedMemory ()
If true, uses CUDA unified memory for memory allocations. If per_process_gpu_memory_fraction option is greater than 1.0, then unified memory is used regardless of the value for this field. See comments for per_process_gpu_memory_fraction field for more details and requirements of the unified memory. This option is useful to oversubscribe memory if multiple processes are sharing a single GPU while individually using less than 1.0 per process memory fraction.
bool use_unified_memory = 2;
عمومی GPUOptions.Experimental.VirtualDevices getVirtualDevices (int index)
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
عمومی int getVirtualDevicesCount ()
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
فهرست عمومی < GPUOptions.Experimental.VirtualDevices > getVirtualDevicesList ()
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
عمومی GPUOptions.Experimental.VirtualDevicesOrBuilder getVirtualDevicesOrBuilder (int index)
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
لیست عمومی<? گسترش GPUOptions.Experimental.VirtualDevicesOrBuilder > getVirtualDevicesOrBuilderList ()
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
هش کد عمومی ()
بولین نهایی عمومی isInitialized ()
عمومی استاتیک GPUOptions.Experimental parseDelimitedFrom (ورودی InputStream)
پرتاب می کند
IOException |
---|
عمومی استاتیک GPUOptions.Experimental parseDelimitedFrom (ورودی InputStream، com.google.protobuf.ExtensionRegistryLite extensionRegistry)
پرتاب می کند
IOException |
---|
عمومی استاتیک GPUOptions.Experimental parseFrom (داده ByteBuffer)
پرتاب می کند
InvalidProtocolBufferException |
---|
عمومی استاتیک GPUOptions.Experimental parseFrom (ورودی com.google.protobuf.CodedInputStream، com.google.protobuf.ExtensionRegistryLite extensionRegistry)
پرتاب می کند
IOException |
---|
عمومی استاتیک GPUOptions.Experimental parseFrom (داده های ByteBuffer، com.google.protobuf.ExtensionRegistryLite extensionRegistry)
پرتاب می کند
InvalidProtocolBufferException |
---|
عمومی استاتیک GPUOptions.Experimental parseFrom (ورودی com.google.protobuf.CodedInputStream)
پرتاب می کند
IOException |
---|
عمومی استاتیک GPUOptions.Experimental parseFrom (بایت[] داده، com.google.protobuf.ExtensionRegistryLite extensionRegistry)
پرتاب می کند
InvalidProtocolBufferException |
---|
عمومی استاتیک GPUOptions.Experimental parseFrom (داده های com.google.protobuf.ByteString)
پرتاب می کند
InvalidProtocolBufferException |
---|
عمومی استاتیک GPUOptions.Experimental parseFrom (ورودی InputStream، com.google.protobuf.ExtensionRegistryLite extensionRegistry)
پرتاب می کند
IOException |
---|
عمومی استاتیک GPUOptions.Experimental parseFrom (داده های com.google.protobuf.ByteString، com.google.protobuf.ExtensionRegistryLite extensionRegistry)
پرتاب می کند
InvalidProtocolBufferException |
---|
استاتیک عمومی تجزیه کننده ()
public void writeTo (خروجی com.google.protobuf.CodedOutputStream)
پرتاب می کند
IOException |
---|