classe finale statica pubblica GPUOptions.Experimental
Tipo di protocollo tensorflow.GPUOptions.Experimental
Classi nidificate
classe | GPUOptions.Experimental.Builder | Tipo di protocollo tensorflow.GPUOptions.Experimental | |
classe | GPUOptions.Experimental.VirtualDevices | Configuration for breaking down a visible GPU into multiple "virtual" devices. | |
interfaccia | GPUOptions.Experimental.VirtualDevicesOrBuilder |
Costanti
Metodi pubblici
booleano | è uguale a (Oggetto oggetto) |
Corda | getCollectiveRingOrder () If non-empty, defines a good GPU ring order on a single worker based on device interconnect. |
com.google.protobuf.ByteString | getCollectiveRingOrderBytes () If non-empty, defines a good GPU ring order on a single worker based on device interconnect. |
GPUOptions.Experimental statico | |
GPUOptions.Experimental | |
com.google.protobuf.Descriptors.Descriptor statico finale | |
int | getKernelTrackerMaxBytes () If kernel_tracker_max_bytes = n > 0, then a tracking event is inserted after every series of kernels allocating a sum of memory >= n. |
int | getKernelTrackerMaxInterval () Parameters for GPUKernelTracker. |
int | getKernelTrackerMaxPending () If kernel_tracker_max_pending > 0 then no more than this many tracking events can be outstanding at a time. |
int | getNumDevToDevCopyStreams () If > 1, the number of device-to-device copy streams to create for each GPUDevice. |
int | |
booleano | getTimestampedAllocator () If true then extra work is done by GPUDevice and GPUBFCAllocator to keep track of when GPU memory is freed and when kernels actually complete so that we can know when a nominally free memory chunk is really not subject to pending use. |
finale com.google.protobuf.UnknownFieldSet | |
booleano | getUseUnifiedMemory () If true, uses CUDA unified memory for memory allocations. |
GPUOptions.Experimental.VirtualDevices | getVirtualDevices (indice int) The multi virtual device settings. |
int | getVirtualDevicesCount () The multi virtual device settings. |
Elenco< GPUOptions.Experimental.VirtualDevices > | getVirtualDevicesList () The multi virtual device settings. |
GPUOptions.Experimental.VirtualDevicesOrBuilder | getVirtualDevicesOrBuilder (indice int) The multi virtual device settings. |
Elenco<? estende GPUOptions.Experimental.VirtualDevicesOrBuilder > | getVirtualDevicesOrBuilderList () The multi virtual device settings. |
int | codicehash () |
booleano finale | |
GPUOptions.Experimental.Builder statico | newBuilder ( GPUOptions.Prototipo sperimentale) |
GPUOptions.Experimental.Builder statico | |
GPUOptions.Experimental.Builder | |
GPUOptions.Experimental statico | parseDelimitedFrom (input InputStream) |
GPUOptions.Experimental statico | parseDelimitedFrom (input InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
GPUOptions.Experimental statico | parseFrom (dati ByteBuffer) |
GPUOptions.Experimental statico | parseFrom (input com.google.protobuf.CodedInputStream, estensione com.google.protobuf.ExtensionRegistryLiteRegistry) |
GPUOptions.Experimental statico | parseFrom (dati ByteBuffer, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
GPUOptions.Experimental statico | parseFrom (ingresso com.google.protobuf.CodedInputStream) |
GPUOptions.Experimental statico | parseFrom (byte[] dati, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
GPUOptions.Experimental statico | parseFrom (dati com.google.protobuf.ByteString) |
GPUOptions.Experimental statico | parseFrom (input InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
GPUOptions.Experimental statico | parseFrom (dati com.google.protobuf.ByteString, estensione Com.google.protobuf.ExtensionRegistryLiteRegistry) |
statico | analizzatore () |
GPUOptions.Experimental.Builder | toBuilder () |
vuoto | writeTo (output com.google.protobuf.CodedOutputStream) |
Metodi ereditati
Costanti
public static final int COLLECTIVE_RING_ORDER_FIELD_NUMBER
Valore costante: 4
pubblico statico finale int KERNEL_TRACKER_MAX_BYTES_FIELD_NUMBER
Valore costante: 8
pubblico statico finale int KERNEL_TRACKER_MAX_INTERVAL_FIELD_NUMBER
Valore costante: 7
pubblico statico finale int KERNEL_TRACKER_MAX_PENDING_FIELD_NUMBER
Valore costante: 9
public static final int NUM_DEV_TO_DEV_COPY_STREAMS_FIELD_NUMBER
Valore costante: 3
public static final int TIMESTAMPED_ALLOCATOR_FIELD_NUMBER
Valore costante: 5
public static final int USE_UNIFIED_MEMORY_FIELD_NUMBER
Valore costante: 2
public static final int VIRTUAL_DEVICES_FIELD_NUMBER
Valore costante: 1
Metodi pubblici
booleano pubblico è uguale a (Oggetto obj)
public String getCollectiveRingOrder ()
If non-empty, defines a good GPU ring order on a single worker based on device interconnect. This assumes that all workers have the same GPU topology. Specify as a comma-separated string, e.g. "3,2,1,0,7,6,5,4". This ring order is used by the RingReducer implementation of CollectiveReduce, and serves as an override to automatic ring order generation in OrderTaskDeviceMap() during CollectiveParam resolution.
string collective_ring_order = 4;
pubblico com.google.protobuf.ByteString getCollectiveRingOrderBytes ()
If non-empty, defines a good GPU ring order on a single worker based on device interconnect. This assumes that all workers have the same GPU topology. Specify as a comma-separated string, e.g. "3,2,1,0,7,6,5,4". This ring order is used by the RingReducer implementation of CollectiveReduce, and serves as an override to automatic ring order generation in OrderTaskDeviceMap() during CollectiveParam resolution.
string collective_ring_order = 4;
public static final com.google.protobuf.Descriptors.Descriptor getDescriptor ()
public int getKernelTrackerMaxBytes ()
If kernel_tracker_max_bytes = n > 0, then a tracking event is inserted after every series of kernels allocating a sum of memory >= n. If one kernel allocates b * n bytes, then one event will be inserted after it, but it will count as b against the pending limit.
int32 kernel_tracker_max_bytes = 8;
public int getKernelTrackerMaxInterval ()
Parameters for GPUKernelTracker. By default no kernel tracking is done. Note that timestamped_allocator is only effective if some tracking is specified. If kernel_tracker_max_interval = n > 0, then a tracking event is inserted after every n kernels without an event.
int32 kernel_tracker_max_interval = 7;
public int getKernelTrackerMaxPending ()
If kernel_tracker_max_pending > 0 then no more than this many tracking events can be outstanding at a time. An attempt to launch an additional kernel will stall until an event completes.
int32 kernel_tracker_max_pending = 9;
public int getNumDevToDevCopyStreams ()
If > 1, the number of device-to-device copy streams to create for each GPUDevice. Default value is 0, which is automatically converted to 1.
int32 num_dev_to_dev_copy_streams = 3;
pubblico getParserForType ()
public int getSerializedSize ()
pubblico booleano getTimestampedAllocator ()
If true then extra work is done by GPUDevice and GPUBFCAllocator to keep track of when GPU memory is freed and when kernels actually complete so that we can know when a nominally free memory chunk is really not subject to pending use.
bool timestamped_allocator = 5;
pubblico finale com.google.protobuf.UnknownFieldSet getUnknownFields ()
pubblico booleano getUseUnifiedMemory ()
If true, uses CUDA unified memory for memory allocations. If per_process_gpu_memory_fraction option is greater than 1.0, then unified memory is used regardless of the value for this field. See comments for per_process_gpu_memory_fraction field for more details and requirements of the unified memory. This option is useful to oversubscribe memory if multiple processes are sharing a single GPU while individually using less than 1.0 per process memory fraction.
bool use_unified_memory = 2;
public GPUOptions.Experimental.VirtualDevices getVirtualDevices (indice int)
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
public int getVirtualDevicesCount ()
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
Elenco pubblico< GPUOptions.Experimental.VirtualDevices > getVirtualDevicesList ()
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
public GPUOptions.Experimental.VirtualDevicesOrBuilder getVirtualDevicesOrBuilder (indice int)
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
Elenco pubblico<? estende GPUOptions.Experimental.VirtualDevicesOrBuilder > getVirtualDevicesOrBuilderList ()
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
public int hashCode ()
public final booleano isInitialized ()
GPUOptions.Experimental statico pubblico parseDelimitedFrom (input InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Lancia
IOException |
---|
GPUOptions statiche pubbliche. ParseFrom sperimentale (dati ByteBuffer)
Lancia
InvalidProtocolBufferException |
---|
GPUOptions statico pubblico. ParseFrom sperimentale (input com.google.protobuf.CodedInputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Lancia
IOException |
---|
GPUOptions statiche pubbliche. ParseFrom sperimentale (dati ByteBuffer, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Lancia
InvalidProtocolBufferException |
---|
GPUOptions.Experimental statico pubblico parseFrom (input com.google.protobuf.CodedInputStream)
Lancia
IOException |
---|
GPUOptions statico pubblico. ParseFrom sperimentale (byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Lancia
InvalidProtocolBufferException |
---|
GPUOptions statico pubblico. ParseFrom sperimentale (dati com.google.protobuf.ByteString)
Lancia
InvalidProtocolBufferException |
---|
GPUOptions statico pubblico. ParseFrom sperimentale (input InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Lancia
IOException |
---|
GPUOptions statiche pubbliche. ParseFrom sperimentale (dati com.google.protobuf.ByteString, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Lancia
InvalidProtocolBufferException |
---|
pubblico statico analizzatore ()
public void writeTo (output com.google.protobuf.CodedOutputStream)
Lancia
IOException |
---|