RewriterConfigOrBuilder

interfaccia pubblica RewriterConfigOrBuilder
Sottoclassi indirette conosciute

Metodi pubblici

abstract RewriterConfig.Toggle
getArithmeticOptimization ()
 Arithmetic optimizations (default is ON)
 e.g.
astratto int
getArithmeticOptimizationValue ()
 Arithmetic optimizations (default is ON)
 e.g.
abstract RewriterConfig.Toggle
getAutoMixedPrecision ()
 Optimize data types for CUDA (default is OFF).
abstract RewriterConfig.Toggle
getAutoMixedPrecisionMkl ()
 Optimize data types for MKL (default is OFF).
astratto int
getAutoMixedPrecisionMklValue ()
 Optimize data types for MKL (default is OFF).
astratto int
getAutoMixedPrecisionValue ()
 Optimize data types for CUDA (default is OFF).
Opzioni AutoParallel astratte
getAutoParallel ()
 Configures AutoParallel optimization passes either through the
 meta-optimizer or when manually specified through the optimizers field.
astratto AutoParallelOptionsOrBuilder
getAutoParallelOrBuilder ()
 Configures AutoParallel optimization passes either through the
 meta-optimizer or when manually specified through the optimizers field.
abstract RewriterConfig.Toggle
getCommonSubgraphEliminazione ()
 Common subgraph elimination (default is ON)
 e.g.
astratto int
getCommonSubgraphEliminationValue ()
 Common subgraph elimination (default is ON)
 e.g.
abstract RewriterConfig.Toggle
getConstantFolding ()
 Fold constants (default is ON)
 Statically infer the value of tensors when possible, and materialize the
 result using constants.
astratto int
getConstantFoldingValue ()
 Fold constants (default is ON)
 Statically infer the value of tensors when possible, and materialize the
 result using constants.
estratto RewriterConfig.CpuLayout
getCpuLayoutConversion ()
 CPU Conversion settings between NHCW and NCHW.
astratto int
getCpuLayoutConversionValue ()
 CPU Conversion settings between NHCW and NCHW.
abstract RewriterConfig.CustomGraphOptimizer
getCustomOptimizers (indice int)
 list of CustomGraphOptimizers to apply.
astratto int
getCustomOptimizersCount ()
 list of CustomGraphOptimizers to apply.
Elenco astratto< RewriterConfig.CustomGraphOptimizer >
getCustomOptimizersList ()
 list of CustomGraphOptimizers to apply.
abstract RewriterConfig.CustomGraphOptimizerOrBuilder
getCustomOptimizersOrBuilder (indice int)
 list of CustomGraphOptimizers to apply.
Elenco astratto<? estende RewriterConfig.CustomGraphOptimizerOrBuilder >
getCustomOptimizersOrBuilderList ()
 list of CustomGraphOptimizers to apply.
abstract RewriterConfig.Toggle
getDebugStripper ()
 Strips debug-related nodes from the graph (off by default).
astratto int
getDebugStripperValue ()
 Strips debug-related nodes from the graph (off by default).
abstract RewriterConfig.Toggle
getDependencyOptimization ()
 Control dependency optimizations (default is ON).
astratto int
getDependencyOptimizationValue ()
 Control dependency optimizations (default is ON).
booleano astratto
getDisableMetaOptimizer ()
 Disable the entire meta optimizer (off by default).
booleano astratto
getDisableModelPruning ()
 If true, don't remove unnecessary ops from the graph
 
bool disable_model_pruning = 2;
booleano astratto
getExperimentalDisableCompressedTensorOptimization ()
 Disable optimizations that assume compressed tensors.
booleano astratto
getFailOnOptimizerErrors ()
 If true, any optimization pass failing will cause the MetaOptimizer to
 stop with an error.
abstract RewriterConfig.Toggle
getFunctionOptimization ()
 Function optimizations (default is ON).
astratto int
getFunctionOptimizationValue ()
 Function optimizations (default is ON).
abstract RewriterConfig.Toggle
getImplementationSelector ()
 Enable the swap of kernel implementations based on the device placement
 (default is ON).
astratto int
getImplementationSelectorValue ()
 Enable the swap of kernel implementations based on the device placement
 (default is ON).
estratto VerifierConfig
getInterOptimizerVerifierConfig ()
 VerifierConfig specifying the verifiers to be run after every optimizer.
abstract VerifierConfigOrBuilder
getInterOptimizerVerifierConfigOrBuilder ()
 VerifierConfig specifying the verifiers to be run after every optimizer.
abstract RewriterConfig.Toggle
getLayoutOptimizer ()
 Optimize tensor layouts (default is ON)
 e.g.
astratto int
getLayoutOptimizerValue ()
 Optimize tensor layouts (default is ON)
 e.g.
abstract RewriterConfig.Toggle
getLoopOptimization ()
 Loop optimizations (default is ON).
astratto int
getLoopOptimizationValue ()
 Loop optimizations (default is ON).
astratto RewriterConfig.MemOptType
getMemoryOptimization ()
 Configures memory optimization passes through the meta-optimizer.
astratto int
getMemoryOptimizationValue ()
 Configures memory optimization passes through the meta-optimizer.
stringa astratta
getMemoryOptimizerTargetNodeNameScope ()
 A node name scope for node names which are valid outputs of recomputations.
astratto com.google.protobuf.ByteString
getMemoryOptimizerTargetNodeNameScopeBytes ()
 A node name scope for node names which are valid outputs of recomputations.
abstract RewriterConfig.NumIterationsType
getMetaOptimizerIterazioni ()
 Controls how many times we run the optimizers in meta optimizer (default
 is once).
astratto int
getMetaOptimizerIterationsValue ()
 Controls how many times we run the optimizers in meta optimizer (default
 is once).
astratto lungo
getMetaOptimizerTimeoutMs ()
 Maximum number of milliseconds to spend optimizing a single graph before
 timing out.
astratto int
getMinGraphNodes ()
 The minimum number of nodes in a graph to optimizer.
stringa astratta
getOptimizers (indice int)
 If non-empty, will use this as an alternative way to specify a list of
 optimizations to turn on and the order of the optimizations (replacing the
 meta-optimizer).
astratto com.google.protobuf.ByteString
getOptimizersBytes (indice int)
 If non-empty, will use this as an alternative way to specify a list of
 optimizations to turn on and the order of the optimizations (replacing the
 meta-optimizer).
astratto int
getOptimizersCount ()
 If non-empty, will use this as an alternative way to specify a list of
 optimizations to turn on and the order of the optimizations (replacing the
 meta-optimizer).
Elenco astratto<String>
getOptimizersList ()
 If non-empty, will use this as an alternative way to specify a list of
 optimizations to turn on and the order of the optimizations (replacing the
 meta-optimizer).
abstract RewriterConfig.Toggle
getPinToHostOptimization ()
 Force small ops onto the CPU (default is OFF).
astratto int
getPinToHostOptimizationValue ()
 Force small ops onto the CPU (default is OFF).
estratto VerifierConfig
getPostOptimizationVerifierConfig ()
 VerifierConfig specifying the verifiers to be run at the end, after all
 optimizers have run.
abstract VerifierConfigOrBuilder
getPostOptimizationVerifierConfigOrBuilder ()
 VerifierConfig specifying the verifiers to be run at the end, after all
 optimizers have run.
abstract RewriterConfig.Toggle
getRemapping ()
 Remapping (default is ON)
 Remap subgraphs onto more efficient implementations.
astratto int
getRemappingValue ()
 Remapping (default is ON)
 Remap subgraphs onto more efficient implementations.
abstract RewriterConfig.Toggle
getScopedAllocatorOptimization ()
 Try to allocate some independent Op outputs contiguously in order to
 merge or eliminate downstream Ops (off by default).
astratto int
getScopedAllocatorOptimizationValue ()
 Try to allocate some independent Op outputs contiguously in order to
 merge or eliminate downstream Ops (off by default).
abstract ScopedAllocatorOptions
getScopedAllocatorOpts ()
.tensorflow.ScopedAllocatorOptions scoped_allocator_opts = 16;
abstract ScopedAllocatorOptionsOrBuilder
getScopedAllocatorOptsOrBuilder ()
.tensorflow.ScopedAllocatorOptions scoped_allocator_opts = 16;
abstract RewriterConfig.Toggle
getShapeOptimization ()
 Shape optimizations (default is ON)
 Simplify computations made on shapes.
astratto int
getShapeOptimizationValue ()
 Shape optimizations (default is ON)
 Simplify computations made on shapes.
booleano astratto
hasAutoParallel ()
 Configures AutoParallel optimization passes either through the
 meta-optimizer or when manually specified through the optimizers field.
booleano astratto
hasInterOptimizerVerifierConfig ()
 VerifierConfig specifying the verifiers to be run after every optimizer.
booleano astratto
hasPostOptimizationVerifierConfig ()
 VerifierConfig specifying the verifiers to be run at the end, after all
 optimizers have run.
booleano astratto
hasScopedAllocatorOpts ()
.tensorflow.ScopedAllocatorOptions scoped_allocator_opts = 16;

Metodi pubblici

abstract pubblico RewriterConfig.Toggle getArithmeticOptimization ()

 Arithmetic optimizations (default is ON)
 e.g. Simplify arithmetic ops; merge ops with same value (like constants).
 
.tensorflow.RewriterConfig.Toggle arithmetic_optimization = 7;

public abstract int getArithmeticOptimizationValue ()

 Arithmetic optimizations (default is ON)
 e.g. Simplify arithmetic ops; merge ops with same value (like constants).
 
.tensorflow.RewriterConfig.Toggle arithmetic_optimization = 7;

estratto pubblico RewriterConfig.Toggle getAutoMixedPrecision ()

 Optimize data types for CUDA (default is OFF).
 This will try to use float16 on GPU which is faster.
 Note that this can change the numerical stability of the graph and may
 require the use of loss scaling to maintain model convergence.
 
.tensorflow.RewriterConfig.Toggle auto_mixed_precision = 23;

estratto pubblico RewriterConfig.Toggle getAutoMixedPrecisionMkl ()

 Optimize data types for MKL (default is OFF).
 This will try to use bfloat16 on CPUs, which is faster.
 Note that this can change the numerical stability of the graph.
 
.tensorflow.RewriterConfig.Toggle auto_mixed_precision_mkl = 25;

public abstract int getAutoMixedPrecisionMklValue ()

 Optimize data types for MKL (default is OFF).
 This will try to use bfloat16 on CPUs, which is faster.
 Note that this can change the numerical stability of the graph.
 
.tensorflow.RewriterConfig.Toggle auto_mixed_precision_mkl = 25;

public abstract int getAutoMixedPrecisionValue ()

 Optimize data types for CUDA (default is OFF).
 This will try to use float16 on GPU which is faster.
 Note that this can change the numerical stability of the graph and may
 require the use of loss scaling to maintain model convergence.
 
.tensorflow.RewriterConfig.Toggle auto_mixed_precision = 23;

public abstract AutoParallelOptions getAutoParallel ()

 Configures AutoParallel optimization passes either through the
 meta-optimizer or when manually specified through the optimizers field.
 
.tensorflow.AutoParallelOptions auto_parallel = 5;

estratto pubblico AutoParallelOptionsOrBuilder getAutoParallelOrBuilder ()

 Configures AutoParallel optimization passes either through the
 meta-optimizer or when manually specified through the optimizers field.
 
.tensorflow.AutoParallelOptions auto_parallel = 5;

abstract pubblico RewriterConfig.Toggle getCommonSubgraphElimination ()

 Common subgraph elimination (default is ON)
 e.g. Simplify arithmetic ops; merge ops with same value (like constants).
 
.tensorflow.RewriterConfig.Toggle common_subgraph_elimination = 24;

public abstract int getCommonSubgraphEliminationValue ()

 Common subgraph elimination (default is ON)
 e.g. Simplify arithmetic ops; merge ops with same value (like constants).
 
.tensorflow.RewriterConfig.Toggle common_subgraph_elimination = 24;

abstract pubblico RewriterConfig.Toggle getConstantFolding ()

 Fold constants (default is ON)
 Statically infer the value of tensors when possible, and materialize the
 result using constants.
 
.tensorflow.RewriterConfig.Toggle constant_folding = 3;

public abstract int getConstantFoldingValue ()

 Fold constants (default is ON)
 Statically infer the value of tensors when possible, and materialize the
 result using constants.
 
.tensorflow.RewriterConfig.Toggle constant_folding = 3;

estratto pubblico RewriterConfig.CpuLayout getCpuLayoutConversion ()

 CPU Conversion settings between NHCW and NCHW.
 
.tensorflow.RewriterConfig.CpuLayout cpu_layout_conversion = 50;

public abstract int getCpuLayoutConversionValue ()

 CPU Conversion settings between NHCW and NCHW.
 
.tensorflow.RewriterConfig.CpuLayout cpu_layout_conversion = 50;

public abstract RewriterConfig.CustomGraphOptimizer getCustomOptimizers (indice int)

 list of CustomGraphOptimizers to apply.
 
repeated .tensorflow.RewriterConfig.CustomGraphOptimizer custom_optimizers = 200;

public abstract int getCustomOptimizersCount ()

 list of CustomGraphOptimizers to apply.
 
repeated .tensorflow.RewriterConfig.CustomGraphOptimizer custom_optimizers = 200;

Elenco abstract pubblico< RewriterConfig.CustomGraphOptimizer > getCustomOptimizersList ()

 list of CustomGraphOptimizers to apply.
 
repeated .tensorflow.RewriterConfig.CustomGraphOptimizer custom_optimizers = 200;

public abstract RewriterConfig.CustomGraphOptimizerOrBuilder getCustomOptimizersOrBuilder (indice int)

 list of CustomGraphOptimizers to apply.
 
repeated .tensorflow.RewriterConfig.CustomGraphOptimizer custom_optimizers = 200;

Elenco abstract pubblico<? estende RewriterConfig.CustomGraphOptimizerOrBuilder > getCustomOptimizersOrBuilderList ()

 list of CustomGraphOptimizers to apply.
 
repeated .tensorflow.RewriterConfig.CustomGraphOptimizer custom_optimizers = 200;

estratto pubblico RewriterConfig.Toggle getDebugStripper ()

 Strips debug-related nodes from the graph (off by default).
 
.tensorflow.RewriterConfig.Toggle debug_stripper = 11;

public abstract int getDebugStripperValue ()

 Strips debug-related nodes from the graph (off by default).
 
.tensorflow.RewriterConfig.Toggle debug_stripper = 11;

estratto pubblico RewriterConfig.Toggle getDependencyOptimization ()

 Control dependency optimizations (default is ON).
 Remove redundant control dependencies, which may enable other optimization.
 
.tensorflow.RewriterConfig.Toggle dependency_optimization = 8;

public abstract int getDependencyOptimizationValue ()

 Control dependency optimizations (default is ON).
 Remove redundant control dependencies, which may enable other optimization.
 
.tensorflow.RewriterConfig.Toggle dependency_optimization = 8;

pubblico astratto booleano getDisableMetaOptimizer ()

 Disable the entire meta optimizer (off by default).
 
bool disable_meta_optimizer = 19;

pubblico astratto booleano getDisableModelPruning ()

 If true, don't remove unnecessary ops from the graph
 
bool disable_model_pruning = 2;

public abstract booleano getExperimentalDisableCompressedTensorOptimization ()

 Disable optimizations that assume compressed tensors. Note that this flag
 is experimental and may be removed in the future.
 
bool experimental_disable_compressed_tensor_optimization = 26;

pubblico astratto booleano getFailOnOptimizerErrors ()

 If true, any optimization pass failing will cause the MetaOptimizer to
 stop with an error. By default - or when set to false, failing passes are
 skipped silently.
 
bool fail_on_optimizer_errors = 21;

abstract pubblico RewriterConfig.Toggle getFunctionOptimization ()

 Function optimizations (default is ON).
 
.tensorflow.RewriterConfig.Toggle function_optimization = 10;

public abstract int getFunctionOptimizationValue ()

 Function optimizations (default is ON).
 
.tensorflow.RewriterConfig.Toggle function_optimization = 10;

estratto pubblico RewriterConfig.Toggle getImplementationSelector ()

 Enable the swap of kernel implementations based on the device placement
 (default is ON).
 
.tensorflow.RewriterConfig.Toggle implementation_selector = 22;

public abstract int getImplementationSelectorValue ()

 Enable the swap of kernel implementations based on the device placement
 (default is ON).
 
.tensorflow.RewriterConfig.Toggle implementation_selector = 22;

estratto pubblico VerifierConfig getInterOptimizerVerifierConfig ()

 VerifierConfig specifying the verifiers to be run after every optimizer.
 
.tensorflow.VerifierConfig inter_optimizer_verifier_config = 300;

public abstract VerifierConfigOrBuilder getInterOptimizerVerifierConfigOrBuilder ()

 VerifierConfig specifying the verifiers to be run after every optimizer.
 
.tensorflow.VerifierConfig inter_optimizer_verifier_config = 300;

estratto pubblico RewriterConfig.Toggle getLayoutOptimizer ()

 Optimize tensor layouts (default is ON)
 e.g. This will try to use NCHW layout on GPU which is faster.
 
.tensorflow.RewriterConfig.Toggle layout_optimizer = 1;

public abstract int getLayoutOptimizerValue ()

 Optimize tensor layouts (default is ON)
 e.g. This will try to use NCHW layout on GPU which is faster.
 
.tensorflow.RewriterConfig.Toggle layout_optimizer = 1;

estratto pubblico RewriterConfig.Toggle getLoopOptimization ()

 Loop optimizations (default is ON).
 
.tensorflow.RewriterConfig.Toggle loop_optimization = 9;

public abstract int getLoopOptimizationValue ()

 Loop optimizations (default is ON).
 
.tensorflow.RewriterConfig.Toggle loop_optimization = 9;

estratto pubblico RewriterConfig.MemOptType getMemoryOptimization ()

 Configures memory optimization passes through the meta-optimizer. Has no
 effect on manually requested memory optimization passes in the optimizers
 field.
 
.tensorflow.RewriterConfig.MemOptType memory_optimization = 4;

public abstract int getMemoryOptimizationValue ()

 Configures memory optimization passes through the meta-optimizer. Has no
 effect on manually requested memory optimization passes in the optimizers
 field.
 
.tensorflow.RewriterConfig.MemOptType memory_optimization = 4;

public abstract String getMemoryOptimizerTargetNodeNameScope ()

 A node name scope for node names which are valid outputs of recomputations.
 Inputs to nodes that match this scope may be recomputed (subject either to
 manual annotation of those input nodes or to manual annotation and
 heuristics depending on memory_optimization), but the nodes themselves will
 not be recomputed. This matches any sub-scopes as well, meaning the scope
 can appear not just as a top-level scope. For example, if the value is
 "gradients/", the default, it will match node name "gradients/foo",
 "foo/gradients/bar", but not "foo_gradients/"
 
string memory_optimizer_target_node_name_scope = 6;

public abstract com.google.protobuf.ByteString getMemoryOptimizerTargetNodeNameScopeBytes ()

 A node name scope for node names which are valid outputs of recomputations.
 Inputs to nodes that match this scope may be recomputed (subject either to
 manual annotation of those input nodes or to manual annotation and
 heuristics depending on memory_optimization), but the nodes themselves will
 not be recomputed. This matches any sub-scopes as well, meaning the scope
 can appear not just as a top-level scope. For example, if the value is
 "gradients/", the default, it will match node name "gradients/foo",
 "foo/gradients/bar", but not "foo_gradients/"
 
string memory_optimizer_target_node_name_scope = 6;

estratto pubblico RewriterConfig.NumIterationsType getMetaOptimizerIterations ()

 Controls how many times we run the optimizers in meta optimizer (default
 is once).
 
.tensorflow.RewriterConfig.NumIterationsType meta_optimizer_iterations = 12;

public abstract int getMetaOptimizerIterationsValue ()

 Controls how many times we run the optimizers in meta optimizer (default
 is once).
 
.tensorflow.RewriterConfig.NumIterationsType meta_optimizer_iterations = 12;

pubblico astratto lungo getMetaOptimizerTimeoutMs ()

 Maximum number of milliseconds to spend optimizing a single graph before
 timing out. If equal to 0 the system picks a default (currently 5 minutes).
 If less than 0 the optimizer will never time out.
 
int64 meta_optimizer_timeout_ms = 20;

public abstract int getMinGraphNodes ()

 The minimum number of nodes in a graph to optimizer. For smaller graphs,
 optimization is skipped.
 0 means the system picks an appropriate number.
 < 0 means do not skip optimization.
 
int32 min_graph_nodes = 17;

public abstract String getOptimizers (indice int)

 If non-empty, will use this as an alternative way to specify a list of
 optimizations to turn on and the order of the optimizations (replacing the
 meta-optimizer).
 Of the RewriterConfig options, only the AutoParallel configuration options
 (the auto_parallel field) apply to manually requested optimization passes
 ("autoparallel"). Memory optimization passes ("memory") invoked here are
 not configurable (in contrast to memory optimization passes through the
 meta-optimizer) and act only on manual op annotations.
 Custom optimizers (see custom_optimizers) that are not part of this
 schedule will be run after - in the order that they were specified.
 
repeated string optimizers = 100;

abstract pubblico com.google.protobuf.ByteString getOptimizersBytes (indice int)

 If non-empty, will use this as an alternative way to specify a list of
 optimizations to turn on and the order of the optimizations (replacing the
 meta-optimizer).
 Of the RewriterConfig options, only the AutoParallel configuration options
 (the auto_parallel field) apply to manually requested optimization passes
 ("autoparallel"). Memory optimization passes ("memory") invoked here are
 not configurable (in contrast to memory optimization passes through the
 meta-optimizer) and act only on manual op annotations.
 Custom optimizers (see custom_optimizers) that are not part of this
 schedule will be run after - in the order that they were specified.
 
repeated string optimizers = 100;

public abstract int getOptimizersCount ()

 If non-empty, will use this as an alternative way to specify a list of
 optimizations to turn on and the order of the optimizations (replacing the
 meta-optimizer).
 Of the RewriterConfig options, only the AutoParallel configuration options
 (the auto_parallel field) apply to manually requested optimization passes
 ("autoparallel"). Memory optimization passes ("memory") invoked here are
 not configurable (in contrast to memory optimization passes through the
 meta-optimizer) and act only on manual op annotations.
 Custom optimizers (see custom_optimizers) that are not part of this
 schedule will be run after - in the order that they were specified.
 
repeated string optimizers = 100;

public abstract List<String> getOptimizersList ()

 If non-empty, will use this as an alternative way to specify a list of
 optimizations to turn on and the order of the optimizations (replacing the
 meta-optimizer).
 Of the RewriterConfig options, only the AutoParallel configuration options
 (the auto_parallel field) apply to manually requested optimization passes
 ("autoparallel"). Memory optimization passes ("memory") invoked here are
 not configurable (in contrast to memory optimization passes through the
 meta-optimizer) and act only on manual op annotations.
 Custom optimizers (see custom_optimizers) that are not part of this
 schedule will be run after - in the order that they were specified.
 
repeated string optimizers = 100;

estratto pubblico RewriterConfig.Toggle getPinToHostOptimization ()

 Force small ops onto the CPU (default is OFF).
 
.tensorflow.RewriterConfig.Toggle pin_to_host_optimization = 18;

public abstract int getPinToHostOptimizationValue ()

 Force small ops onto the CPU (default is OFF).
 
.tensorflow.RewriterConfig.Toggle pin_to_host_optimization = 18;

public abstract VerifierConfig getPostOptimizationVerifierConfig ()

 VerifierConfig specifying the verifiers to be run at the end, after all
 optimizers have run.
 
.tensorflow.VerifierConfig post_optimization_verifier_config = 301;

public abstract VerifierConfigOrBuilder getPostOptimizationVerifierConfigOrBuilder ()

 VerifierConfig specifying the verifiers to be run at the end, after all
 optimizers have run.
 
.tensorflow.VerifierConfig post_optimization_verifier_config = 301;

abstract pubblico RewriterConfig.Toggle getRemapping ()

 Remapping (default is ON)
 Remap subgraphs onto more efficient implementations.
 
.tensorflow.RewriterConfig.Toggle remapping = 14;

public abstract int getRemappingValue ()

 Remapping (default is ON)
 Remap subgraphs onto more efficient implementations.
 
.tensorflow.RewriterConfig.Toggle remapping = 14;

abstract pubblico RewriterConfig.Toggle getScopedAllocatorOptimization ()

 Try to allocate some independent Op outputs contiguously in order to
 merge or eliminate downstream Ops (off by default).
 
.tensorflow.RewriterConfig.Toggle scoped_allocator_optimization = 15;

public abstract int getScopedAllocatorOptimizationValue ()

 Try to allocate some independent Op outputs contiguously in order to
 merge or eliminate downstream Ops (off by default).
 
.tensorflow.RewriterConfig.Toggle scoped_allocator_optimization = 15;

estratto pubblico ScopedAllocatorOptions getScopedAllocatorOpts ()

.tensorflow.ScopedAllocatorOptions scoped_allocator_opts = 16;

public abstract ScopedAllocatorOptionsOrBuilder getScopedAllocatorOptsOrBuilder ()

.tensorflow.ScopedAllocatorOptions scoped_allocator_opts = 16;

abstract pubblico RewriterConfig.Toggle getShapeOptimization ()

 Shape optimizations (default is ON)
 Simplify computations made on shapes.
 
.tensorflow.RewriterConfig.Toggle shape_optimization = 13;

public abstract int getShapeOptimizationValue ()

 Shape optimizations (default is ON)
 Simplify computations made on shapes.
 
.tensorflow.RewriterConfig.Toggle shape_optimization = 13;

pubblico astratto booleano hasAutoParallel ()

 Configures AutoParallel optimization passes either through the
 meta-optimizer or when manually specified through the optimizers field.
 
.tensorflow.AutoParallelOptions auto_parallel = 5;

pubblico astratto booleano hasInterOptimizerVerifierConfig ()

 VerifierConfig specifying the verifiers to be run after every optimizer.
 
.tensorflow.VerifierConfig inter_optimizer_verifier_config = 300;

public abstract booleano hasPostOptimizationVerifierConfig ()

 VerifierConfig specifying the verifiers to be run at the end, after all
 optimizers have run.
 
.tensorflow.VerifierConfig post_optimization_verifier_config = 301;

pubblico astratto booleano hasScopedAllocatorOpts ()

.tensorflow.ScopedAllocatorOptions scoped_allocator_opts = 16;