RunOptions.Experimental.Builder

clase final estática pública RunOptions.Experimental.Builder

 Everything inside Experimental is subject to change and is not subject
 to API stability guarantees in
 https://www.tensorflow.org/guide/version_compat.
 
Protobuf tipo tensorflow.RunOptions.Experimental

Métodos públicos

RunOptions.Experimental.Builder
addRepeatedField (campo com.google.protobuf.Descriptors.FieldDescriptor, valor del objeto)
Opciones de ejecución.Experimental
Opciones de ejecución.Experimental
RunOptions.Experimental.Builder
claro ()
RunOptions.Experimental.Builder
clearCollectiveGraphKey ()
 If non-zero, declares that this graph is going to use collective
 ops and must synchronize step_ids with any other graph with this
 same group_key value (in a distributed computation where tasks
 run disjoint graphs).
RunOptions.Experimental.Builder
clearField (campo com.google.protobuf.Descriptors.FieldDescriptor)
RunOptions.Experimental.Builder
clearOneof (com.google.protobuf.Descriptors.OneofDescriptor uno de)
RunOptions.Experimental.Builder
borrarRunHandlerPoolOptions ()
.tensorflow.RunOptions.Experimental.RunHandlerPoolOptions run_handler_pool_options = 3;
RunOptions.Experimental.Builder
borrarUseRunHandlerPool ()
 If true, then operations (using the inter-op pool) across all
 session::run() calls will be centrally scheduled, optimizing for (median
 and tail) latency.
RunOptions.Experimental.Builder
clonar ()
largo
getCollectiveGraphKey ()
 If non-zero, declares that this graph is going to use collective
 ops and must synchronize step_ids with any other graph with this
 same group_key value (in a distributed computation where tasks
 run disjoint graphs).
Opciones de ejecución.Experimental
com.google.protobuf.Descriptors.Descriptor estático final
com.google.protobuf.Descriptors.Descriptor
RunOptions.Experimental.RunHandlerPoolOptions
getRunHandlerPoolOptions ()
.tensorflow.RunOptions.Experimental.RunHandlerPoolOptions run_handler_pool_options = 3;
RunOptions.Experimental.RunHandlerPoolOptions.Builder
getRunHandlerPoolOptionsBuilder ()
.tensorflow.RunOptions.Experimental.RunHandlerPoolOptions run_handler_pool_options = 3;
RunOptions.Experimental.RunHandlerPoolOptionsOrBuilder
getRunHandlerPoolOptionsOrBuilder ()
.tensorflow.RunOptions.Experimental.RunHandlerPoolOptions run_handler_pool_options = 3;
booleano
getUseRunHandlerPool ()
 If true, then operations (using the inter-op pool) across all
 session::run() calls will be centrally scheduled, optimizing for (median
 and tail) latency.
booleano
hasRunHandlerPoolOptions ()
.tensorflow.RunOptions.Experimental.RunHandlerPoolOptions run_handler_pool_options = 3;
booleano final
RunOptions.Experimental.Builder
mergeFrom (entrada com.google.protobuf.CodedInputStream, com.google.protobuf.ExtensionRegistryLite extensiónRegistry)
RunOptions.Experimental.Builder
mergeFrom (com.google.protobuf.Message otro)
RunOptions.Experimental.Builder
mergeRunHandlerPoolOptions (valor RunOptions.Experimental.RunHandlerPoolOptions )
.tensorflow.RunOptions.Experimental.RunHandlerPoolOptions run_handler_pool_options = 3;
Opciones de ejecución finales.Experimental.Builder
mergeUnknownFields (com.google.protobuf.UnknownFieldSet desconocidoFields)
RunOptions.Experimental.Builder
setCollectiveGraphKey (valor largo)
 If non-zero, declares that this graph is going to use collective
 ops and must synchronize step_ids with any other graph with this
 same group_key value (in a distributed computation where tasks
 run disjoint graphs).
RunOptions.Experimental.Builder
setField (campo com.google.protobuf.Descriptors.FieldDescriptor, valor del objeto)
RunOptions.Experimental.Builder
setRepeatedField (campo com.google.protobuf.Descriptors.FieldDescriptor, índice int, valor del objeto)
RunOptions.Experimental.Builder
setRunHandlerPoolOptions (valor RunOptions.Experimental.RunHandlerPoolOptions )
.tensorflow.RunOptions.Experimental.RunHandlerPoolOptions run_handler_pool_options = 3;
RunOptions.Experimental.Builder
setRunHandlerPoolOptions ( RunOptions.Experimental.RunHandlerPoolOptions.Builder builderForValue)
.tensorflow.RunOptions.Experimental.RunHandlerPoolOptions run_handler_pool_options = 3;
Opciones de ejecución finales.Experimental.Builder
setUnknownFields (com.google.protobuf.UnknownFieldSet desconocidoFields)
RunOptions.Experimental.Builder
setUseRunHandlerPool (valor booleano)
 If true, then operations (using the inter-op pool) across all
 session::run() calls will be centrally scheduled, optimizing for (median
 and tail) latency.

Métodos heredados

Métodos públicos

public RunOptions.Experimental.Builder addRepeatedField (campo com.google.protobuf.Descriptors.FieldDescriptor, valor del objeto)

pública RunOptions.Construcción experimental ()

public RunOptions.Experimental buildPartial ()

public RunOptions.Experimental.Builder clearCollectiveGraphKey ()

 If non-zero, declares that this graph is going to use collective
 ops and must synchronize step_ids with any other graph with this
 same group_key value (in a distributed computation where tasks
 run disjoint graphs).
 
int64 collective_graph_key = 1;

público RunOptions.Experimental.Builder clearField (campo com.google.protobuf.Descriptors.FieldDescriptor)

public RunOptions.Experimental.Builder clearOneof (com.google.protobuf.Descriptors.OneofDescriptor oneof)

public RunOptions.Experimental.Builder clearRunHandlerPoolOptions ()

.tensorflow.RunOptions.Experimental.RunHandlerPoolOptions run_handler_pool_options = 3;

public RunOptions.Experimental.Builder clearUseRunHandlerPool ()

 If true, then operations (using the inter-op pool) across all
 session::run() calls will be centrally scheduled, optimizing for (median
 and tail) latency.
 Consider using this option for CPU-bound workloads like inference.
 
bool use_run_handler_pool = 2;

getCollectiveGraphKey público largo ()

 If non-zero, declares that this graph is going to use collective
 ops and must synchronize step_ids with any other graph with this
 same group_key value (in a distributed computation where tasks
 run disjoint graphs).
 
int64 collective_graph_key = 1;

RunOptions públicas.Experimental getDefaultInstanceForType ()

público estático final com.google.protobuf.Descriptors.Descriptor getDescriptor ()

público com.google.protobuf.Descriptors.Descriptor getDescriptorForType ()

public RunOptions.Experimental.RunHandlerPoolOptions getRunHandlerPoolOptions ()

.tensorflow.RunOptions.Experimental.RunHandlerPoolOptions run_handler_pool_options = 3;

public RunOptions.Experimental.RunHandlerPoolOptions.Builder getRunHandlerPoolOptionsBuilder ()

.tensorflow.RunOptions.Experimental.RunHandlerPoolOptions run_handler_pool_options = 3;

public RunOptions.Experimental.RunHandlerPoolOptionsOrBuilder getRunHandlerPoolOptionsOrBuilder ()

.tensorflow.RunOptions.Experimental.RunHandlerPoolOptions run_handler_pool_options = 3;

getUseRunHandlerPool público booleano ()

 If true, then operations (using the inter-op pool) across all
 session::run() calls will be centrally scheduled, optimizing for (median
 and tail) latency.
 Consider using this option for CPU-bound workloads like inference.
 
bool use_run_handler_pool = 2;

hasRunHandlerPoolOptions booleano público ()

.tensorflow.RunOptions.Experimental.RunHandlerPoolOptions run_handler_pool_options = 3;

público final booleano isInitialized ()

RunOptions.Experimental.Builder público mergeFrom (entrada com.google.protobuf.CodedInputStream, com.google.protobuf.ExtensionRegistryLite extensiónRegistry)

Lanza
IOExcepción

public RunOptions.Experimental.Builder mergeFrom (com.google.protobuf.Message otro)

público RunOptions.Experimental.Builder mergeRunHandlerPoolOptions (valor RunOptions.Experimental.RunHandlerPoolOptions )

.tensorflow.RunOptions.Experimental.RunHandlerPoolOptions run_handler_pool_options = 3;

RunOptions.Experimental.Builder final público mergeUnknownFields (com.google.protobuf.UnknownFieldSet desconocidoFields)

public RunOptions.Experimental.Builder setCollectiveGraphKey (valor largo)

 If non-zero, declares that this graph is going to use collective
 ops and must synchronize step_ids with any other graph with this
 same group_key value (in a distributed computation where tasks
 run disjoint graphs).
 
int64 collective_graph_key = 1;

public RunOptions.Experimental.Builder setField (campo com.google.protobuf.Descriptors.FieldDescriptor, valor del objeto)

public RunOptions.Experimental.Builder setRepeatedField (campo com.google.protobuf.Descriptors.FieldDescriptor, índice int, valor del objeto)

público RunOptions.Experimental.Builder setRunHandlerPoolOptions (valor RunOptions.Experimental.RunHandlerPoolOptions )

.tensorflow.RunOptions.Experimental.RunHandlerPoolOptions run_handler_pool_options = 3;

público RunOptions.Experimental.Builder setRunHandlerPoolOptions ( RunOptions.Experimental.RunHandlerPoolOptions.Builder builderForValue)

.tensorflow.RunOptions.Experimental.RunHandlerPoolOptions run_handler_pool_options = 3;

RunOptions.Experimental.Builder final público setUnknownFields (com.google.protobuf.UnknownFieldSet desconocidoFields)

público RunOptions.Experimental.Builder setUseRunHandlerPool (valor booleano)

 If true, then operations (using the inter-op pool) across all
 session::run() calls will be centrally scheduled, optimizing for (median
 and tail) latency.
 Consider using this option for CPU-bound workloads like inference.
 
bool use_run_handler_pool = 2;