|  View source on GitHub | 
Multinomial distribution.
Inherits From: Distribution
tf.distributions.Multinomial(
    total_count, logits=None, probs=None, validate_args=False, allow_nan_stats=True,
    name='Multinomial'
)
This Multinomial distribution is parameterized by probs, a (batch of)
length-K prob (probability) vectors (K > 1) such that
tf.reduce_sum(probs, -1) = 1, and a total_count number of trials, i.e.,
the number of trials per draw from the Multinomial. It is defined over a
(batch of) length-K vector counts such that
tf.reduce_sum(counts, -1) = total_count. The Multinomial is identically the
Binomial distribution when K = 2.
Mathematical Details
The Multinomial is a distribution over K-class counts, i.e., a length-K
vector of non-negative integer counts = n = [n_0, ..., n_{K-1}].
The probability mass function (pmf) is,
pmf(n; pi, N) = prod_j (pi_j)**n_j / Z
Z = (prod_j n_j!) / N!
where:
- probs = pi = [pi_0, ..., pi_{K-1}],- pi_j > 0,- sum_j pi_j = 1,
- total_count = N,- Na positive integer,
- Zis the normalization constant, and,
- N!denotes- Nfactorial.
Distribution parameters are automatically broadcast in all functions; see examples for details.
Pitfalls
The number of classes, K, must not exceed:
- the largest integer representable by self.dtype, i.e.,2**(mantissa_bits+1)(IEE754),
- the maximum Tensorindex, i.e.,2**31-1.
In other words,
K <= min(2**31-1, {
  tf.float16: 2**11,
  tf.float32: 2**24,
  tf.float64: 2**53 }[param.dtype])
Examples
Create a 3-class distribution, with the 3rd class is most likely to be drawn, using logits.
logits = [-50., -43, 0]
dist = Multinomial(total_count=4., logits=logits)
Create a 3-class distribution, with the 3rd class is most likely to be drawn.
p = [.2, .3, .5]
dist = Multinomial(total_count=4., probs=p)
The distribution functions can be evaluated on counts.
# counts same shape as p.
counts = [1., 0, 3]
dist.prob(counts)  # Shape []
# p will be broadcast to [[.2, .3, .5], [.2, .3, .5]] to match counts.
counts = [[1., 2, 1], [2, 2, 0]]
dist.prob(counts)  # Shape [2]
# p will be broadcast to shape [5, 7, 3] to match counts.
counts = [[...]]  # Shape [5, 7, 3]
dist.prob(counts)  # Shape [5, 7]
Create a 2-batch of 3-class distributions.
p = [[.1, .2, .7], [.3, .3, .4]]  # Shape [2, 3]
dist = Multinomial(total_count=[4., 5], probs=p)
counts = [[2., 1, 1], [3, 1, 1]]
dist.prob(counts)  # Shape [2]
dist.sample(5) # Shape [5, 2, 3]
| Args | |
|---|---|
| total_count | Non-negative floating point tensor with shape broadcastable
to [N1,..., Nm]withm >= 0. Defines this as a batch ofN1 x ... x Nmdifferent Multinomial distributions. Its components
should be equal to integer values. | 
| logits | Floating point tensor representing unnormalized log-probabilities
of a positive event with shape broadcastable to [N1,..., Nm, K]m >= 0, and the same dtype astotal_count. Defines
this as a batch ofN1 x ... x NmdifferentKclass Multinomial
distributions. Only one oflogitsorprobsshould be passed in. | 
| probs | Positive floating point tensor with shape broadcastable to [N1,..., Nm, K]m >= 0and same dtype astotal_count. Defines
this as a batch ofN1 x ... x NmdifferentKclass Multinomial
distributions.probs's components in the last portion of its shape
should sum to1. Only one oflogitsorprobsshould be passed in. | 
| validate_args | Python bool, defaultFalse. WhenTruedistribution
parameters are checked for validity despite possibly degrading runtime
performance. WhenFalseinvalid inputs may silently render incorrect
outputs. | 
| allow_nan_stats | Python bool, defaultTrue. WhenTrue, statistics
(e.g., mean, mode, variance) use the value "NaN" to indicate the
result is undefined. WhenFalse, an exception is raised if one or
more of the statistic's batch members are undefined. | 
| name | Python strname prefixed to Ops created by this class. | 
| Attributes | |
|---|---|
| allow_nan_stats | Python booldescribing behavior when a stat is undefined.Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is undefined (no clear way to say it is either + or - infinity), so the variance = E[(X - mean)**2] is also undefined. | 
| batch_shape | Shape of a single sample from a single event index as a TensorShape.May be partially defined or unknown. The batch dimensions are indexes into independent, non-identical parameterizations of this distribution. | 
| dtype | The DTypeofTensors handled by thisDistribution. | 
| event_shape | Shape of a single sample from a single batch as a TensorShape.May be partially defined or unknown. | 
| logits | Vector of coordinatewise logits. | 
| name | Name prepended to all ops created by this Distribution. | 
| parameters | Dictionary of parameters used to instantiate this Distribution. | 
| probs | Probability of drawing a 1in that coordinate. | 
| reparameterization_type | Describes how samples from the distribution are reparameterized. Currently this is one of the static instances
 | 
| total_count | Number of trials used to construct a sample. | 
| validate_args | Python boolindicating possibly expensive checks are enabled. | 
Methods
batch_shape_tensor
batch_shape_tensor(
    name='batch_shape_tensor'
)
Shape of a single sample from a single event index as a 1-D Tensor.
The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.
| Args | |
|---|---|
| name | name to give to the op | 
| Returns | |
|---|---|
| batch_shape | Tensor. | 
cdf
cdf(
    value, name='cdf'
)
Cumulative distribution function.
Given random variable X, the cumulative distribution function cdf is:
cdf(x) := P[X <= x]
| Args | |
|---|---|
| value | floatordoubleTensor. | 
| name | Python strprepended to names of ops created by this function. | 
| Returns | |
|---|---|
| cdf | a Tensorof shapesample_shape(x) + self.batch_shapewith
values of typeself.dtype. | 
copy
copy(
    **override_parameters_kwargs
)
Creates a deep copy of the distribution.
| Args | |
|---|---|
| **override_parameters_kwargs | String/value dictionary of initialization arguments to override with new values. | 
| Returns | |
|---|---|
| distribution | A new instance of type(self)initialized from the union
of self.parameters and override_parameters_kwargs, i.e.,dict(self.parameters, **override_parameters_kwargs). | 
covariance
covariance(
    name='covariance'
)
Covariance.
Covariance is (possibly) defined only for non-scalar-event distributions.
For example, for a length-k, vector-valued distribution, it is calculated
as,
Cov[i, j] = Covariance(X_i, X_j) = E[(X_i - E[X_i]) (X_j - E[X_j])]
where Cov is a (batch of) k x k matrix, 0 <= (i, j) < k, and E
denotes expectation.
Alternatively, for non-vector, multivariate distributions (e.g.,
matrix-valued, Wishart), Covariance shall return a (batch of) matrices
under some vectorization of the events, i.e.,
Cov[i, j] = Covariance(Vec(X)_i, Vec(X)_j) = [as above]
where Cov is a (batch of) k' x k' matrices,
0 <= (i, j) < k' = reduce_prod(event_shape), and Vec is some function
mapping indices of this distribution's event dimensions to indices of a
length-k' vector.
| Args | |
|---|---|
| name | Python strprepended to names of ops created by this function. | 
| Returns | |
|---|---|
| covariance | Floating-point Tensorwith shape[B1, ..., Bn, k', k']where the firstndimensions are batch coordinates andk' = reduce_prod(self.event_shape). | 
cross_entropy
cross_entropy(
    other, name='cross_entropy'
)
Computes the (Shannon) cross entropy.
Denote this distribution (self) by P and the other distribution by
Q. Assuming P, Q are absolutely continuous with respect to
one another and permit densities p(x) dr(x) and q(x) dr(x), (Shanon)
cross entropy is defined as:
H[P, Q] = E_p[-log q(X)] = -int_F p(x) log q(x) dr(x)
where F denotes the support of the random variable X ~ P.
| Args | |
|---|---|
| other | tfp.distributions.Distributioninstance. | 
| name | Python strprepended to names of ops created by this function. | 
| Returns | |
|---|---|
| cross_entropy | self.dtypeTensorwith shape[B1, ..., Bn]representingndifferent calculations of (Shanon) cross entropy. | 
entropy
entropy(
    name='entropy'
)
Shannon entropy in nats.
event_shape_tensor
event_shape_tensor(
    name='event_shape_tensor'
)
Shape of a single sample from a single batch as a 1-D int32 Tensor.
| Args | |
|---|---|
| name | name to give to the op | 
| Returns | |
|---|---|
| event_shape | Tensor. | 
is_scalar_batch
is_scalar_batch(
    name='is_scalar_batch'
)
Indicates that batch_shape == [].
| Args | |
|---|---|
| name | Python strprepended to names of ops created by this function. | 
| Returns | |
|---|---|
| is_scalar_batch | boolscalarTensor. | 
is_scalar_event
is_scalar_event(
    name='is_scalar_event'
)
Indicates that event_shape == [].
| Args | |
|---|---|
| name | Python strprepended to names of ops created by this function. | 
| Returns | |
|---|---|
| is_scalar_event | boolscalarTensor. | 
kl_divergence
kl_divergence(
    other, name='kl_divergence'
)
Computes the Kullback--Leibler divergence.
Denote this distribution (self) by p and the other distribution by
q. Assuming p, q are absolutely continuous with respect to reference
measure r, the KL divergence is defined as:
KL[p, q] = E_p[log(p(X)/q(X))]
         = -int_F p(x) log q(x) dr(x) + int_F p(x) log p(x) dr(x)
         = H[p, q] - H[p]
where F denotes the support of the random variable X ~ p, H[., .]
denotes (Shanon) cross entropy, and H[.] denotes (Shanon) entropy.
| Args | |
|---|---|
| other | tfp.distributions.Distributioninstance. | 
| name | Python strprepended to names of ops created by this function. | 
| Returns | |
|---|---|
| kl_divergence | self.dtypeTensorwith shape[B1, ..., Bn]representingndifferent calculations of the Kullback-Leibler
divergence. | 
log_cdf
log_cdf(
    value, name='log_cdf'
)
Log cumulative distribution function.
Given random variable X, the cumulative distribution function cdf is:
log_cdf(x) := Log[ P[X <= x] ]
Often, a numerical approximation can be used for log_cdf(x) that yields
a more accurate answer than simply taking the logarithm of the cdf when
x << -1.
| Args | |
|---|---|
| value | floatordoubleTensor. | 
| name | Python strprepended to names of ops created by this function. | 
| Returns | |
|---|---|
| logcdf | a Tensorof shapesample_shape(x) + self.batch_shapewith
values of typeself.dtype. | 
log_prob
log_prob(
    value, name='log_prob'
)
Log probability density/mass function.
Additional documentation from Multinomial:
For each batch of counts, value = [n_0, ...
,n_{k-1}], P[value] is the probability that after sampling self.total_count
draws from this Multinomial distribution, the number of draws falling in class
j is n_j. Since this definition is exchangeable; different
sequences have the same counts so the probability includes a combinatorial
coefficient.
| Args | |
|---|---|
| value | floatordoubleTensor. | 
| name | Python strprepended to names of ops created by this function. | 
| Returns | |
|---|---|
| log_prob | a Tensorof shapesample_shape(x) + self.batch_shapewith
values of typeself.dtype. | 
log_survival_function
log_survival_function(
    value, name='log_survival_function'
)
Log survival function.
Given random variable X, the survival function is defined:
log_survival_function(x) = Log[ P[X > x] ]
                         = Log[ 1 - P[X <= x] ]
                         = Log[ 1 - cdf(x) ]
Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x) when x >> 1.
| Args | |
|---|---|
| value | floatordoubleTensor. | 
| name | Python strprepended to names of ops created by this function. | 
| Returns | |
|---|---|
| Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype. | 
mean
mean(
    name='mean'
)
Mean.
mode
mode(
    name='mode'
)
Mode.
param_shapes
@classmethodparam_shapes( sample_shape, name='DistributionParamShapes' )
Shapes of parameters given the desired shape of a call to sample().
This is a class method that describes what key/value arguments are required
to instantiate the given Distribution so that a particular shape is
returned for that instance's call to sample().
Subclasses should override class method _param_shapes.
| Args | |
|---|---|
| sample_shape | Tensoror python list/tuple. Desired shape of a call tosample(). | 
| name | name to prepend ops with. | 
| Returns | |
|---|---|
| dictof parameter name toTensorshapes. | 
param_static_shapes
@classmethodparam_static_shapes( sample_shape )
param_shapes with static (i.e. TensorShape) shapes.
This is a class method that describes what key/value arguments are required
to instantiate the given Distribution so that a particular shape is
returned for that instance's call to sample(). Assumes that the sample's
shape is known statically.
Subclasses should override class method _param_shapes to return
constant-valued tensors when constant values are fed.
| Args | |
|---|---|
| sample_shape | TensorShapeor python list/tuple. Desired shape of a call
tosample(). | 
| Returns | |
|---|---|
| dictof parameter name toTensorShape. | 
| Raises | |
|---|---|
| ValueError | if sample_shapeis aTensorShapeand is not fully defined. | 
prob
prob(
    value, name='prob'
)
Probability density/mass function.
| Args | |
|---|---|
| value | floatordoubleTensor. | 
| name | Python strprepended to names of ops created by this function. | 
| Returns | |
|---|---|
| prob | a Tensorof shapesample_shape(x) + self.batch_shapewith
values of typeself.dtype. | 
quantile
quantile(
    value, name='quantile'
)
Quantile function. Aka "inverse cdf" or "percent point function".
Given random variable X and p in [0, 1], the quantile is:
quantile(p) := x such that P[X <= x] == p
| Args | |
|---|---|
| value | floatordoubleTensor. | 
| name | Python strprepended to names of ops created by this function. | 
| Returns | |
|---|---|
| quantile | a Tensorof shapesample_shape(x) + self.batch_shapewith
values of typeself.dtype. | 
sample
sample(
    sample_shape=(), seed=None, name='sample'
)
Generate samples of the specified shape.
Note that a call to sample() without arguments will generate a single
sample.
| Args | |
|---|---|
| sample_shape | 0D or 1D int32Tensor. Shape of the generated samples. | 
| seed | Python integer seed for RNG | 
| name | name to give to the op. | 
| Returns | |
|---|---|
| samples | a Tensorwith prepended dimensionssample_shape. | 
stddev
stddev(
    name='stddev'
)
Standard deviation.
Standard deviation is defined as,
stddev = E[(X - E[X])**2]**0.5
where X is the random variable associated with this distribution, E
denotes expectation, and stddev.shape = batch_shape + event_shape.
| Args | |
|---|---|
| name | Python strprepended to names of ops created by this function. | 
| Returns | |
|---|---|
| stddev | Floating-point Tensorwith shape identical tobatch_shape + event_shape, i.e., the same shape asself.mean(). | 
survival_function
survival_function(
    value, name='survival_function'
)
Survival function.
Given random variable X, the survival function is defined:
survival_function(x) = P[X > x]
                     = 1 - P[X <= x]
                     = 1 - cdf(x).
| Args | |
|---|---|
| value | floatordoubleTensor. | 
| name | Python strprepended to names of ops created by this function. | 
| Returns | |
|---|---|
| Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype. | 
variance
variance(
    name='variance'
)
Variance.
Variance is defined as,
Var = E[(X - E[X])**2]
where X is the random variable associated with this distribution, E
denotes expectation, and Var.shape = batch_shape + event_shape.
| Args | |
|---|---|
| name | Python strprepended to names of ops created by this function. | 
| Returns | |
|---|---|
| variance | Floating-point Tensorwith shape identical tobatch_shape + event_shape, i.e., the same shape asself.mean(). |