Implementation of the scikit-learn classifier API for Keras.
tf.keras.wrappers.scikit_learn.KerasClassifier(
    build_fn=None, **sk_params
)
Methods
check_params
View source
check_params(
    params
)
Checks for user typos in params.
| Arguments | 
params
 | 
dictionary; the parameters to be checked
 | 
| Raises | 
ValueError
 | 
if any member of params is not a valid argument.
 | 
filter_sk_params
View source
filter_sk_params(
    fn, override=None
)
Filters sk_params and returns those in fn's arguments.
| Arguments | 
fn
 | 
arbitrary function
 | 
override
 | 
dictionary, values to override sk_params
 | 
| Returns | 
res
 | 
dictionary containing variables
in both sk_params and fn's arguments.
 | 
fit
View source
fit(
    x, y, **kwargs
)
Constructs a new model with build_fn & fit the model to (x, y).
| Arguments | 
x
 | 
array-like, shape (n_samples, n_features)
Training samples where n_samples is the number of samples
and n_features is the number of features.
 | 
y
 | 
array-like, shape (n_samples,) or (n_samples, n_outputs)
True labels for x.
 | 
**kwargs
 | 
dictionary arguments
Legal arguments are the arguments of Sequential.fit
 | 
| Returns | 
history
 | 
object
details about the training history at each epoch.
 | 
| Raises | 
ValueError
 | 
In case of invalid shape for y argument.
 | 
get_params
View source
get_params(
    **params
)
Gets parameters for this estimator.
| Arguments | 
**params
 | 
ignored (exists for API compatibility).
 | 
| Returns | 
| 
Dictionary of parameter names mapped to their values.
 | 
predict
View source
predict(
    x, **kwargs
)
Returns the class predictions for the given test data.
| Arguments | 
x
 | 
array-like, shape (n_samples, n_features)
Test samples where n_samples is the number of samples
and n_features is the number of features.
 | 
**kwargs
 | 
dictionary arguments
Legal arguments are the arguments
of Sequential.predict_classes.
 | 
| Returns | 
preds
 | 
array-like, shape (n_samples,)
Class predictions.
 | 
predict_proba
View source
predict_proba(
    x, **kwargs
)
Returns class probability estimates for the given test data.
| Arguments | 
x
 | 
array-like, shape (n_samples, n_features)
Test samples where n_samples is the number of samples
and n_features is the number of features.
 | 
**kwargs
 | 
dictionary arguments
Legal arguments are the arguments
of Sequential.predict_classes.
 | 
| Returns | 
proba
 | 
array-like, shape (n_samples, n_outputs)
Class probability estimates.
In the case of binary classification,
to match the scikit-learn API,
will return an array of shape (n_samples, 2)
(instead of (n_sample, 1) as in Keras).
 | 
score
View source
score(
    x, y, **kwargs
)
Returns the mean accuracy on the given test data and labels.
| Arguments | 
x
 | 
array-like, shape (n_samples, n_features)
Test samples where n_samples is the number of samples
and n_features is the number of features.
 | 
y
 | 
array-like, shape (n_samples,) or (n_samples, n_outputs)
True labels for x.
 | 
**kwargs
 | 
dictionary arguments
Legal arguments are the arguments of Sequential.evaluate.
 | 
| Returns | 
score
 | 
float
Mean accuracy of predictions on x wrt. y.
 | 
| Raises | 
ValueError
 | 
If the underlying model isn't configured to
compute accuracy. You should pass metrics=["accuracy"] to
the .compile() method of the model.
 | 
set_params
View source
set_params(
    **params
)
Sets the parameters of this estimator.
| Arguments | 
**params
 | 
Dictionary of parameter names mapped to their values.
 |