publiczna statyczna klasa końcowa GPUOptions.Experimental
Protobuf typu tensorflow.GPUOptions.Experimental
Klasy zagnieżdżone
klasa | Opcje GPU. Eksperymentalne. Konstruktor | Protobuf typu tensorflow.GPUOptions.Experimental | |
klasa | Opcje GPU. Eksperymentalne. Urządzenia wirtualne | Configuration for breaking down a visible GPU into multiple "virtual" devices. | |
interfejs | GPUOptions.Experimental.VirtualDevicesOrBuilder |
Stałe
Metody publiczne
wartość logiczna | równa się (obiekt obiektu) |
Smyczkowy | getCollectiveRingOrder () If non-empty, defines a good GPU ring order on a single worker based on device interconnect. |
com.google.protobuf.ByteString | getCollectiveRingOrderBytes () If non-empty, defines a good GPU ring order on a single worker based on device interconnect. |
statyczne opcje GPU. Eksperymentalne | |
Opcje GPU. Eksperymentalne | |
końcowy statyczny com.google.protobuf.Descriptors.Descriptor | |
wew | getKernelTrackerMaxBytes () If kernel_tracker_max_bytes = n > 0, then a tracking event is inserted after every series of kernels allocating a sum of memory >= n. |
wew | getKernelTrackerMaxInterval () Parameters for GPUKernelTracker. |
wew | getKernelTrackerMaxPending () If kernel_tracker_max_pending > 0 then no more than this many tracking events can be outstanding at a time. |
wew | getNumDevToDevCopyStreams () If > 1, the number of device-to-device copy streams to create for each GPUDevice. |
wew | |
wartość logiczna | getTimestampedAllocator () If true then extra work is done by GPUDevice and GPUBFCAllocator to keep track of when GPU memory is freed and when kernels actually complete so that we can know when a nominally free memory chunk is really not subject to pending use. |
końcowy com.google.protobuf.UnknownFieldSet | |
wartość logiczna | getUseUnifiedMemory () If true, uses CUDA unified memory for memory allocations. |
Opcje GPU. Eksperymentalne. Urządzenia wirtualne | getVirtualDevices (indeks int) The multi virtual device settings. |
wew | getVirtualDevicesCount () The multi virtual device settings. |
Lista< GPUOptions.Experimental.VirtualDevices > | pobierz listę urządzeń wirtualnych () The multi virtual device settings. |
GPUOptions.Experimental.VirtualDevicesOrBuilder | getVirtualDevicesOrBuilder (indeks int) The multi virtual device settings. |
Lista<? rozszerza GPUOptions.Experimental.VirtualDevicesOrBuilder > | getVirtualDevicesOrBuilderList () The multi virtual device settings. |
wew | hashCode () |
końcowa wartość logiczna | |
statyczne opcje GPU.Experimental.Builder | newBuilder ( GPUOptions.Prototyp eksperymentalny) |
statyczne opcje GPU.Experimental.Builder | |
Opcje GPU. Eksperymentalne. Konstruktor | |
statyczne opcje GPU. Eksperymentalne | parseDelimitedFrom (wejście strumienia wejściowego) |
statyczne opcje GPU. Eksperymentalne | parseDelimitedFrom (dane wejścioweInputStream, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry) |
statyczne opcje GPU. Eksperymentalne | parseFrom (dane ByteBuffer) |
statyczne opcje GPU. Eksperymentalne | parseFrom (wejście com.google.protobuf.CodedInputStream, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry) |
statyczne opcje GPU. Eksperymentalne | parseFrom (dane ByteBuffer, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry) |
statyczne opcje GPU. Eksperymentalne | parseFrom (wejście com.google.protobuf.CodedInputStream) |
statyczne opcje GPU. Eksperymentalne | parseFrom (bajt [] dane, com.google.protobuf.ExtensionRegistryLite rozszerzenieRegistry) |
statyczne opcje GPU. Eksperymentalne | parseFrom (dane com.google.protobuf.ByteString) |
statyczne opcje GPU. Eksperymentalne | parseFrom (dane wejścioweInputStream, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry) |
statyczne opcje GPU. Eksperymentalne | parseFrom (dane com.google.protobuf.ByteString, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry) |
statyczny | parser () |
Opcje GPU. Eksperymentalne. Konstruktor | |
próżnia | writeTo (wyjście com.google.protobuf.CodedOutputStream) |
Metody dziedziczone
Stałe
publiczny statyczny końcowy int COLLECTIVE_RING_ORDER_FIELD_NUMBER
Wartość stała: 4
publiczny statyczny końcowy int KERNEL_TRACKER_MAX_BYTES_FIELD_NUMBER
Wartość stała: 8
publiczny statyczny końcowy int KERNEL_TRACKER_MAX_INTERVAL_FIELD_NUMBER
Wartość stała: 7
publiczny statyczny końcowy w KERNEL_TRACKER_MAX_PENDING_FIELD_NUMBER
Wartość stała: 9
publiczny statyczny końcowy int NUM_DEV_TO_DEV_COPY_STREAMS_FIELD_NUMBER
Wartość stała: 3
publiczny statyczny końcowy int TIMESTAMPED_ALLOCATOR_FIELD_NUMBER
Wartość stała: 5
publiczny statyczny końcowy int USE_UNIFIED_MEMORY_FIELD_NUMBER
Wartość stała: 2
publiczny statyczny końcowy int VIRTUAL_DEVICES_FIELD_NUMBER
Wartość stała: 1
Metody publiczne
publiczna wartość logiczna równa się (obiekt obiektu)
public String getCollectiveRingOrder ()
If non-empty, defines a good GPU ring order on a single worker based on device interconnect. This assumes that all workers have the same GPU topology. Specify as a comma-separated string, e.g. "3,2,1,0,7,6,5,4". This ring order is used by the RingReducer implementation of CollectiveReduce, and serves as an override to automatic ring order generation in OrderTaskDeviceMap() during CollectiveParam resolution.
string collective_ring_order = 4;
public com.google.protobuf.ByteString getCollectiveRingOrderBytes ()
If non-empty, defines a good GPU ring order on a single worker based on device interconnect. This assumes that all workers have the same GPU topology. Specify as a comma-separated string, e.g. "3,2,1,0,7,6,5,4". This ring order is used by the RingReducer implementation of CollectiveReduce, and serves as an override to automatic ring order generation in OrderTaskDeviceMap() during CollectiveParam resolution.
string collective_ring_order = 4;
public static final com.google.protobuf.Descriptors.Descriptor getDescriptor ()
public int getKernelTrackerMaxBytes ()
If kernel_tracker_max_bytes = n > 0, then a tracking event is inserted after every series of kernels allocating a sum of memory >= n. If one kernel allocates b * n bytes, then one event will be inserted after it, but it will count as b against the pending limit.
int32 kernel_tracker_max_bytes = 8;
public int getKernelTrackerMaxInterval ()
Parameters for GPUKernelTracker. By default no kernel tracking is done. Note that timestamped_allocator is only effective if some tracking is specified. If kernel_tracker_max_interval = n > 0, then a tracking event is inserted after every n kernels without an event.
int32 kernel_tracker_max_interval = 7;
public int getKernelTrackerMaxPending ()
If kernel_tracker_max_pending > 0 then no more than this many tracking events can be outstanding at a time. An attempt to launch an additional kernel will stall until an event completes.
int32 kernel_tracker_max_pending = 9;
public int getNumDevToDevCopyStreams ()
If > 1, the number of device-to-device copy streams to create for each GPUDevice. Default value is 0, which is automatically converted to 1.
int32 num_dev_to_dev_copy_streams = 3;
publiczny getParserForType ()
publiczny int getSerializedSize ()
publiczna wartość logiczna getTimestampedAllocator ()
If true then extra work is done by GPUDevice and GPUBFCAllocator to keep track of when GPU memory is freed and when kernels actually complete so that we can know when a nominally free memory chunk is really not subject to pending use.
bool timestamped_allocator = 5;
publiczny finał com.google.protobuf.UnknownFieldSet getUnknownFields ()
publiczna wartość logiczna getUseUnifiedMemory ()
If true, uses CUDA unified memory for memory allocations. If per_process_gpu_memory_fraction option is greater than 1.0, then unified memory is used regardless of the value for this field. See comments for per_process_gpu_memory_fraction field for more details and requirements of the unified memory. This option is useful to oversubscribe memory if multiple processes are sharing a single GPU while individually using less than 1.0 per process memory fraction.
bool use_unified_memory = 2;
public GPUOptions.Experimental.VirtualDevices getVirtualDevices (indeks int)
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
public int getVirtualDevicesCount ()
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
public List< GPUOptions.Experimental.VirtualDevices > getVirtualDevicesList ()
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
public GPUOptions.Experimental.VirtualDevicesOrBuilder getVirtualDevicesOrBuilder (indeks int)
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
lista publiczna<? rozszerza GPUOptions.Experimental.VirtualDevicesOrBuilder > getVirtualDevicesOrBuilderList ()
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
publiczny int hashCode ()
publiczna końcowa wartość logiczna isInitialized ()
public static GPUOptions.Experimental parseDelimitedFrom (wejście wejściowe strumienia wejściowego)
Rzuca
Wyjątek IO |
---|
public static GPUOptions.Experimental parseDelimitedFrom (dane wejściowe wejściowe strumienia wejściowego, com.google.protobuf.ExtensionRegistryLite rozszerzenieRegistry)
Rzuca
Wyjątek IO |
---|
public static GPUOptions.Experimental parseFrom (dane ByteBuffer)
Rzuca
Nieprawidłowy wyjątekProtocolBufferException |
---|
publiczne statyczne GPUOptions.Experimental parseFrom (wejście com.google.protobuf.CodedInputStream, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry)
Rzuca
Wyjątek IO |
---|
public static GPUOptions.Experimental parseFrom (dane ByteBuffer, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry)
Rzuca
Nieprawidłowy wyjątekProtocolBufferException |
---|
public static GPUOptions.Experimental parseFrom (wejście com.google.protobuf.CodedInputStream)
Rzuca
Wyjątek IO |
---|
public static GPUOptions.Experimental parseFrom (bajt[] dane, com.google.protobuf.ExtensionRegistryLite rozszerzenieRegistry)
Rzuca
Nieprawidłowy wyjątekProtocolBufferException |
---|
public static GPUOptions.Experimental parseFrom (dane com.google.protobuf.ByteString)
Rzuca
Nieprawidłowy wyjątekProtocolBufferException |
---|
public static GPUOptions.Experimental parseFrom (dane wejścioweInputStream, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry)
Rzuca
Wyjątek IO |
---|
public static GPUOptions.Experimental parseFrom (com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry)
Rzuca
Nieprawidłowy wyjątekProtocolBufferException |
---|
publiczna statyka parser ()
public void writeTo (wyjście com.google.protobuf.CodedOutputStream)
Rzuca
Wyjątek IO |
---|