This can be seen as a softplus applied to the scaled input, with the output
appropriately scaled. As alpha tends to 0, scaled_softplus(x, alpha) tends
to relu(x). The clipping is optional. As alpha->0, scaled_softplus(x, alpha)
tends to relu(x), and scaled_softplus(x, alpha, clip=6) tends to relu6(x).
Args
x
A Tensor of inputs.
alpha
A Tensor, indicating the amount of smoothness. The caller
must ensure that alpha > 0.
clip
(optional) A Tensor, the upper bound to clip the values.
name
A name for the scope of the operations (optional).
Returns
A tensor of the size and type determined by broadcasting of the inputs.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.contrib.nn.scaled_softplus\n\n\u003cbr /\u003e\n\n|---------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/contrib/nn/python/ops/scaled_softplus.py#L37-L112) |\n\nReturns `y = alpha * ln(1 + exp(x / alpha))` or `min(y, clip)`. \n\n tf.contrib.nn.scaled_softplus(\n x, alpha, clip=None, name=None\n )\n\nThis can be seen as a softplus applied to the scaled input, with the output\nappropriately scaled. As `alpha` tends to 0, `scaled_softplus(x, alpha)` tends\nto `relu(x)`. The clipping is optional. As alpha-\\\u003e0, scaled_softplus(x, alpha)\ntends to relu(x), and scaled_softplus(x, alpha, clip=6) tends to relu6(x).\n| **Note:** the gradient for this operation is defined to depend on the backprop inputs as well as the outputs of this operation.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------|-------------------------------------------------------------------------------------------|\n| `x` | A `Tensor` of inputs. |\n| `alpha` | A `Tensor`, indicating the amount of smoothness. The caller must ensure that `alpha \u003e 0`. |\n| `clip` | (optional) A `Tensor`, the upper bound to clip the values. |\n| `name` | A name for the scope of the operations (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A tensor of the size and type determined by broadcasting of the inputs. ||\n\n\u003cbr /\u003e"]]