DeserializeManySparse
संग्रह की मदद से व्यवस्थित रहें
अपनी प्राथमिकताओं के आधार पर, कॉन्टेंट को सेव करें और कैटगरी में बांटें.
क्रमबद्ध मिनीबैच से `SparseTensors` को डिसेरिएलाइज़ और संयोजित करें।
इनपुट `serialized_sparse` आकार का एक स्ट्रिंग मैट्रिक्स होना चाहिए `[N x 3]` जहां `N` मिनीबैच आकार है और पंक्तियाँ `SerializeSparse` के पैक्ड आउटपुट के अनुरूप हैं। मूल `SparseTensor` ऑब्जेक्ट की रैंक सभी से मेल खानी चाहिए। जब अंतिम `SparseTensor` बनाया जाता है, तो इसकी रैंक आने वाली `SparseTensor` ऑब्जेक्ट की रैंक से एक अधिक होती है (उन्हें एक नई पंक्ति आयाम के साथ संयोजित किया गया है)।
सभी आयामों के लिए आउटपुट `SparseTensor` ऑब्जेक्ट के आकार मान, लेकिन पहले संबंधित आयामों के लिए इनपुट `SparseTensor` ऑब्जेक्ट के आकार मान अधिकतम हैं। इसका पहला आकार मान `एन` है, मिनीबैच आकार।
इनपुट `SparseTensor` ऑब्जेक्ट्स के सूचकांकों को मानक लेक्सिकोग्राफ़िक क्रम में क्रमबद्ध माना जाता है। यदि ऐसा नहीं है, तो इस चरण के बाद इंडेक्स ऑर्डर को पुनर्स्थापित करने के लिए `SparseReorder` चलाएँ।
उदाहरण के लिए, यदि क्रमबद्ध इनपुट एक `[2 x 3]` मैट्रिक्स है जो दो मूल `SparseTensor` ऑब्जेक्ट का प्रतिनिधित्व करता है:
सूचकांक = [0] [10] [20] मान = [1, 2, 3] आकार = [50]
और
सूचकांक = [2] [10] मान = [4, 5] आकार = [30]
तो अंतिम डिसेरिएलाइज़्ड `SparseTensor` होगा:
सूचकांक = [0 0] [0 10] [0 20] [1 2] [1 10] मान = [1, 2, 3, 4, 5] आकार = [2 50]
स्थिरांक
डोरी | OP_NAME | इस ऑप का नाम, जैसा कि TensorFlow कोर इंजन द्वारा जाना जाता है |
विरासत में मिली विधियाँ
कक्षा java.lang.Object से बूलियन | बराबर (ऑब्जेक्ट arg0) |
अंतिम कक्षा<?> | गेटक्लास () |
int यहाँ | हैश कोड () |
अंतिम शून्य | सूचित करें () |
अंतिम शून्य | सभी को सूचित करें () |
डोरी | स्ट्रिंग () |
अंतिम शून्य | प्रतीक्षा करें (लंबा arg0, int arg1) |
अंतिम शून्य | प्रतीक्षा करें (लंबा arg0) |
अंतिम शून्य | इंतज़ार () |
स्थिरांक
सार्वजनिक स्थैतिक अंतिम स्ट्रिंग OP_NAME
इस ऑप का नाम, जैसा कि TensorFlow कोर इंजन द्वारा जाना जाता है
स्थिर मान: "DeserializeManySparse"
सार्वजनिक तरीके
एक नया DeserializeManySparse ऑपरेशन लपेटकर एक क्लास बनाने की फ़ैक्टरी विधि।
पैरामीटर
दायरा | वर्तमान दायरा |
---|
क्रमबद्ध विरल | 2-डी, `एन` क्रमबद्ध `स्पार्सटेन्सर` ऑब्जेक्ट। 3 कॉलम होने चाहिए. |
---|
dtype | क्रमबद्ध `SparseTensor` ऑब्जेक्ट का `dtype`। |
---|
रिटर्न
- DeserializeManySparse का एक नया उदाहरण
सार्वजनिक आउटपुट <T> sparseValues ()
जब तक कुछ अलग से न बताया जाए, तब तक इस पेज की सामग्री को Creative Commons Attribution 4.0 License के तहत और कोड के नमूनों को Apache 2.0 License के तहत लाइसेंस मिला है. ज़्यादा जानकारी के लिए, Google Developers साइट नीतियां देखें. Oracle और/या इससे जुड़ी हुई कंपनियों का, Java एक रजिस्टर किया हुआ ट्रेडमार्क है.
आखिरी बार 2025-07-25 (UTC) को अपडेट किया गया.
[null,null,["आखिरी बार 2025-07-25 (UTC) को अपडेट किया गया."],[],[],null,["# DeserializeManySparse\n\npublic final class **DeserializeManySparse** \nDeserialize and concatenate \\`SparseTensors\\` from a serialized minibatch.\n\n\nThe input \\`serialized_sparse\\` must be a string matrix of shape \\`\\[N x 3\\]\\` where\n\\`N\\` is the minibatch size and the rows correspond to packed outputs of\n\\`SerializeSparse\\`. The ranks of the original \\`SparseTensor\\` objects\nmust all match. When the final \\`SparseTensor\\` is created, it has rank one\nhigher than the ranks of the incoming \\`SparseTensor\\` objects\n(they have been concatenated along a new row dimension).\n\n\nThe output \\`SparseTensor\\` object's shape values for all dimensions but the\nfirst are the max across the input \\`SparseTensor\\` objects' shape values\nfor the corresponding dimensions. Its first shape value is \\`N\\`, the minibatch\nsize.\n\n\nThe input \\`SparseTensor\\` objects' indices are assumed ordered in\nstandard lexicographic order. If this is not the case, after this\nstep run \\`SparseReorder\\` to restore index ordering.\n\n\nFor example, if the serialized input is a \\`\\[2 x 3\\]\\` matrix representing two\noriginal \\`SparseTensor\\` objects:\n\n\nindex = \\[ 0\\]\n\\[10\\]\n\\[20\\]\nvalues = \\[1, 2, 3\\]\nshape = \\[50\\]\n\n\nand\n\n\nindex = \\[ 2\\]\n\\[10\\]\nvalues = \\[4, 5\\]\nshape = \\[30\\]\n\n\nthen the final deserialized \\`SparseTensor\\` will be:\n\n\nindex = \\[0 0\\]\n\\[0 10\\]\n\\[0 20\\]\n\\[1 2\\]\n\\[1 10\\]\nvalues = \\[1, 2, 3, 4, 5\\]\nshape = \\[2 50\\]\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n### Constants\n\n|--------|----------------------------------------------------------------------------------|---------------------------------------------------------|\n| String | [OP_NAME](/jvm/api_docs/java/org/tensorflow/op/io/DeserializeManySparse#OP_NAME) | The name of this op, as known by TensorFlow core engine |\n\n### Public Methods\n\n|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| static \\\u003cT extends [TType](/jvm/api_docs/java/org/tensorflow/types/family/TType)\\\u003e [DeserializeManySparse](/jvm/api_docs/java/org/tensorflow/op/io/DeserializeManySparse)\\\u003cT\\\u003e | [create](/jvm/api_docs/java/org/tensorflow/op/io/DeserializeManySparse#create(org.tensorflow.op.Scope, org.tensorflow.Operand\u003corg.tensorflow.types.TString\u003e, java.lang.Class\u003cT\u003e))([Scope](/jvm/api_docs/java/org/tensorflow/op/Scope) scope, [Operand](/jvm/api_docs/java/org/tensorflow/Operand)\\\u003c[TString](/jvm/api_docs/java/org/tensorflow/types/TString)\\\u003e serializedSparse, Class\\\u003cT\\\u003e dtype) Factory method to create a class wrapping a new DeserializeManySparse operation. |\n| [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003c[TInt64](/jvm/api_docs/java/org/tensorflow/types/TInt64)\\\u003e | [sparseIndices](/jvm/api_docs/java/org/tensorflow/op/io/DeserializeManySparse#sparseIndices())() |\n| [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003c[TInt64](/jvm/api_docs/java/org/tensorflow/types/TInt64)\\\u003e | [sparseShape](/jvm/api_docs/java/org/tensorflow/op/io/DeserializeManySparse#sparseShape())() |\n| [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e | [sparseValues](/jvm/api_docs/java/org/tensorflow/op/io/DeserializeManySparse#sparseValues())() |\n\n### Inherited Methods\n\nFrom class [org.tensorflow.op.RawOp](/jvm/api_docs/java/org/tensorflow/op/RawOp) \n\n|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| final boolean | [equals](/jvm/api_docs/java/org/tensorflow/op/RawOp#equals(java.lang.Object))(Object obj) |\n| final int | [hashCode](/jvm/api_docs/java/org/tensorflow/op/RawOp#hashCode())() |\n| [Operation](/jvm/api_docs/java/org/tensorflow/Operation) | [op](/jvm/api_docs/java/org/tensorflow/op/RawOp#op())() Return this unit of computation as a single [Operation](/jvm/api_docs/java/org/tensorflow/Operation). |\n| final String | [toString](/jvm/api_docs/java/org/tensorflow/op/RawOp#toString())() |\n\nFrom class java.lang.Object \n\n|------------------|---------------------------|\n| boolean | equals(Object arg0) |\n| final Class\\\u003c?\\\u003e | getClass() |\n| int | hashCode() |\n| final void | notify() |\n| final void | notifyAll() |\n| String | toString() |\n| final void | wait(long arg0, int arg1) |\n| final void | wait(long arg0) |\n| final void | wait() |\n\nFrom interface [org.tensorflow.op.Op](/jvm/api_docs/java/org/tensorflow/op/Op) \n\n|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| abstract [ExecutionEnvironment](/jvm/api_docs/java/org/tensorflow/ExecutionEnvironment) | [env](/jvm/api_docs/java/org/tensorflow/op/Op#env())() Return the execution environment this op was created in. |\n| abstract [Operation](/jvm/api_docs/java/org/tensorflow/Operation) | [op](/jvm/api_docs/java/org/tensorflow/op/Op#op())() Return this unit of computation as a single [Operation](/jvm/api_docs/java/org/tensorflow/Operation). |\n\nConstants\n---------\n\n#### public static final String\n**OP_NAME**\n\nThe name of this op, as known by TensorFlow core engine \nConstant Value: \"DeserializeManySparse\"\n\nPublic Methods\n--------------\n\n#### public static [DeserializeManySparse](/jvm/api_docs/java/org/tensorflow/op/io/DeserializeManySparse)\\\u003cT\\\u003e\n**create**\n([Scope](/jvm/api_docs/java/org/tensorflow/op/Scope) scope, [Operand](/jvm/api_docs/java/org/tensorflow/Operand)\\\u003c[TString](/jvm/api_docs/java/org/tensorflow/types/TString)\\\u003e serializedSparse, Class\\\u003cT\\\u003e dtype)\n\nFactory method to create a class wrapping a new DeserializeManySparse operation. \n\n##### Parameters\n\n| scope | current scope |\n| serializedSparse | 2-D, The \\`N\\` serialized \\`SparseTensor\\` objects. Must have 3 columns. |\n| dtype | The \\`dtype\\` of the serialized \\`SparseTensor\\` objects. |\n|------------------|--------------------------------------------------------------------------|\n\n##### Returns\n\n- a new instance of DeserializeManySparse \n\n#### public [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003c[TInt64](/jvm/api_docs/java/org/tensorflow/types/TInt64)\\\u003e\n**sparseIndices**\n()\n\n\u003cbr /\u003e\n\n#### public [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003c[TInt64](/jvm/api_docs/java/org/tensorflow/types/TInt64)\\\u003e\n**sparseShape**\n()\n\n\u003cbr /\u003e\n\n#### public [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e\n**sparseValues**\n()\n\n\u003cbr /\u003e"]]