Ftrl-प्रॉक्सिमल योजना के अनुसार '*var' में प्रासंगिक प्रविष्टियाँ अद्यतन करें।
यानी उन पंक्तियों के लिए जिनके लिए हमारे पास ग्रेड है, हम var, accum और रैखिक को इस प्रकार अपडेट करते हैं: grad_with_shlinkage = grad + 2 * l2_shlinkage * var accum_new = accum + grad_with_shlinkage * grad_with_shlinkage रैखिक += grad_with_shlinkage + (accum_new^(-lr_power) - accum^ (-lr_power)) / lr * var द्विघात = 1.0 / (accum_new^(lr_power) * lr) + 2 * l2 var = (चिह्न (रैखिक) * l1 - रैखिक) / द्विघात यदि |रैखिक| > एल1 अन्यथा 0.0 संचय = संचय_नया
नेस्टेड क्लासेस
कक्षा | रिसोर्सस्पार्सएप्लाईएफटीआरएल.विकल्प | ResourceSparseApplyFtrl के लिए वैकल्पिक विशेषताएँ |
स्थिरांक
डोरी | OP_NAME | इस ऑप का नाम, जैसा कि TensorFlow कोर इंजन द्वारा जाना जाता है |
सार्वजनिक तरीके
स्थिर <T टीटाइप का विस्तार करता है > रिसोर्सस्पार्सएप्लाईFtrl | बनाएं ( स्कोप स्कोप, ऑपरेंड <?> var, ऑपरेंड <?> जमा, ऑपरेंड <?> लीनियर, ऑपरेंड <T> ग्रेड, ऑपरेंड <? एक्सटेंड्स TNumber > इंडेक्स, ऑपरेंड <T> lr, ऑपरेंड <T> l1, ऑपरेंड <टी> एल2, ऑपरेंड <टी> एल2श्रिंकेज, ऑपरेंड <टी> एलआरपावर, विकल्प... विकल्प) एक नए रिसोर्सस्पार्सएप्लाईFtrl ऑपरेशन को लपेटकर एक क्लास बनाने की फ़ैक्टरी विधि। |
स्थैतिक रिसोर्सस्पार्सएप्लाईएफटीआरएल.विकल्प | multipleLinearByLr (बूलियन मल्टिलीनियरByLr) |
स्थैतिक रिसोर्सस्पार्सएप्लाईएफटीआरएल.विकल्प | यूज़लॉकिंग (बूलियन यूज़लॉकिंग) |
विरासत में मिली विधियाँ
स्थिरांक
सार्वजनिक स्थैतिक अंतिम स्ट्रिंग OP_NAME
इस ऑप का नाम, जैसा कि TensorFlow कोर इंजन द्वारा जाना जाता है
सार्वजनिक तरीके
सार्वजनिक स्थैतिक संसाधनSparseApplyFtrl बनाएं ( स्कोप स्कोप, ऑपरेंड <?> var, ऑपरेंड <?> जमा, ऑपरेंड <?> लीनियर, ऑपरेंड <T> ग्रेड, ऑपरेंड <? एक्सटेंड्स TNumber > इंडेक्स, ऑपरेंड <T> lr, ऑपरेंड <T> एल1, ऑपरेंड <टी> एल2, ऑपरेंड <टी> एल2श्रिंकेज, ऑपरेंड <टी> एलआरपावर, विकल्प... विकल्प)
एक नए रिसोर्सस्पार्सएप्लाईFtrl ऑपरेशन को लपेटकर एक क्लास बनाने की फ़ैक्टरी विधि।
पैरामीटर
दायरा | वर्तमान दायरा |
---|---|
वर | एक वेरिएबल() से होना चाहिए। |
जमा | एक वेरिएबल() से होना चाहिए। |
रेखीय | एक वेरिएबल() से होना चाहिए। |
ग्रैड | ढाल. |
सूचकांक | var और accum के पहले आयाम में सूचकांकों का एक वेक्टर। |
एलआर | मापन कारक। एक अदिश राशि होनी चाहिए. |
एल1 | एल1 नियमितीकरण. एक अदिश राशि होनी चाहिए. |
एल2 | L2 सिकुड़न नियमितीकरण. एक अदिश राशि होनी चाहिए. |
एलआरपावर | मापन कारक। एक अदिश राशि होनी चाहिए. |
विकल्प | वैकल्पिक गुण मान रखता है |
रिटर्न
- resourceSparseApplyFtrl का एक नया उदाहरण
सार्वजनिक स्थैतिक संसाधनSparseApplyFtrl.ऑप्शंस यूज़लॉकिंग (बूलियन यूज़लॉकिंग)
पैरामीटर
लॉकिंग का उपयोग करें | यदि `सही` है, तो var और Accum Tensors का अद्यतनीकरण एक लॉक द्वारा संरक्षित किया जाएगा; अन्यथा व्यवहार अपरिभाषित है, लेकिन कम विवाद प्रदर्शित कर सकता है। |
---|