var: ควรมาจากตัวแปร ()
คลาสที่ซ้อนกัน
| ระดับ | SparseApplyAdadelta.Options | แอ็ตทริบิวต์ทางเลือกสำหรับ SparseApplyAdadelta | |
ค่าคงที่
| สตริง | OP_NAME | ชื่อของ op นี้ ซึ่งรู้จักกันในชื่อของเอ็นจิ้นหลัก TensorFlow |
วิธีการสาธารณะ
| เอาท์พุต <T> | เป็นเอาท์พุต () ส่งกลับค่าแฮนเดิลสัญลักษณ์ของเทนเซอร์ |
| คงที่ <T ขยาย TType > SparseApplyAdadelta <T> | สร้าง ( ขอบเขต ขอบเขต ตัวดำเนินการ <T> var, ตัวดำเนินการ <T> สะสม, ตัวดำเนินการ <T> accumUpdate, ตัวดำเนินการ <T> lr, ตัวดำเนินการ <T> rho, ตัวดำเนินการ <T> เอปไซลอน, ตัวดำเนินการ <T> ผู้สำเร็จการศึกษา, ตัวดำเนินการ <? ขยาย TNumber > ดัชนี ตัวเลือก... ตัวเลือก) วิธีการจากโรงงานเพื่อสร้างคลาสที่รวมการดำเนินการ SparseApplyAdadelta ใหม่ |
| เอาท์พุต <T> | ออก () เช่นเดียวกับ "var" |
| SparseApplyAdadelta.Options แบบคงที่ | useLocking (การใช้ล็อคแบบบูลีน) |
วิธีการสืบทอด
ค่าคงที่
สตริงสุดท้ายแบบคงที่สาธารณะ OP_NAME
ชื่อของ op นี้ ซึ่งรู้จักกันในชื่อของเอ็นจิ้นหลัก TensorFlow
วิธีการสาธารณะ
เอาท์ พุท สาธารณะ <T> asOutput ()
ส่งกลับค่าแฮนเดิลสัญลักษณ์ของเทนเซอร์
อินพุตสำหรับการดำเนินการ TensorFlow คือเอาต์พุตของการดำเนินการ TensorFlow อื่น วิธีการนี้ใช้เพื่อรับหมายเลขอ้างอิงสัญลักษณ์ที่แสดงถึงการคำนวณอินพุต
สาธารณะ SparseApplyAdadelta <T> สร้าง แบบคงที่ (ขอบเขต ขอบเขต , ตัวดำเนินการ <T> var, ตัวดำเนินการ <T> accum, ตัวดำเนิน การ <T> accumUpdate, ตัวดำเนินการ <T> lr, ตัวดำเนินการ <T> rho, ตัวดำเนินการ <T> เอปไซลอน, ตัวดำเนินการ <T > ผู้สำเร็จการศึกษา, ตัวดำเนินการ <? ขยาย TNumber > ดัชนี, ตัวเลือก... ตัวเลือก)
วิธีการจากโรงงานเพื่อสร้างคลาสที่รวมการดำเนินการ SparseApplyAdadelta ใหม่
พารามิเตอร์
| ขอบเขต | ขอบเขตปัจจุบัน |
|---|---|
| สะสม | ควรมาจากตัวแปร () |
| สะสมUpdate | : ควรมาจากตัวแปร() |
| ล | อัตราการเรียนรู้ ต้องเป็นสเกลาร์ |
| โร | ปัจจัยการสลายตัว ต้องเป็นสเกลาร์ |
| เอปไซลอน | ปัจจัยคงที่ ต้องเป็นสเกลาร์ |
| ผู้สำเร็จการศึกษา | การไล่ระดับสี |
| ดัชนี | เวกเตอร์ของดัชนีในมิติแรกของ var และ accum |
| ตัวเลือก | มีค่าแอตทริบิวต์ทางเลือก |
การส่งคืน
- อินสแตนซ์ใหม่ของ SparseApplyAdadelta
สาธารณะ SparseApplyAdadelta.Options useLocking แบบคงที่ (useLocking แบบบูลีน)
พารามิเตอร์
| ใช้ล็อค | หากเป็น True การอัปเดต var และ accum tensor จะได้รับการปกป้องด้วยการล็อค มิฉะนั้นพฤติกรรมจะไม่ได้กำหนดไว้ แต่อาจแสดงความขัดแย้งน้อยลง |
|---|
var: ควรมาจากตัวแปร ()
คลาสที่ซ้อนกัน
| ระดับ | SparseApplyAdadelta.Options | แอ็ตทริบิวต์ทางเลือกสำหรับ SparseApplyAdadelta | |
ค่าคงที่
| สตริง | OP_NAME | ชื่อของ op นี้ ซึ่งรู้จักกันในชื่อของเอ็นจิ้นหลัก TensorFlow |
วิธีการสาธารณะ
| เอาท์พุต <T> | เป็นเอาท์พุต () ส่งกลับค่าแฮนเดิลสัญลักษณ์ของเทนเซอร์ |
| คงที่ <T ขยาย TType > SparseApplyAdadelta <T> | สร้าง ( ขอบเขต ขอบเขต ตัวดำเนินการ <T> var, ตัวดำเนินการ <T> สะสม, ตัวดำเนินการ <T> accumUpdate, ตัวดำเนินการ <T> lr, ตัวดำเนินการ <T> rho, ตัวดำเนินการ <T> เอปไซลอน, ตัวดำเนินการ <T> ผู้สำเร็จการศึกษา, ตัวดำเนินการ <? ขยาย TNumber > ดัชนี ตัวเลือก... ตัวเลือก) วิธีการจากโรงงานเพื่อสร้างคลาสที่รวมการดำเนินการ SparseApplyAdadelta ใหม่ |
| เอาท์พุต <T> | ออก () เช่นเดียวกับ "var" |
| SparseApplyAdadelta.Options แบบคงที่ | useLocking (การใช้ล็อคแบบบูลีน) |
วิธีการสืบทอด
ค่าคงที่
สตริงสุดท้ายแบบคงที่สาธารณะ OP_NAME
ชื่อของ op นี้ ซึ่งรู้จักกันในชื่อของเอ็นจิ้นหลัก TensorFlow
วิธีการสาธารณะ
เอาท์ พุท สาธารณะ <T> asOutput ()
ส่งกลับค่าแฮนเดิลสัญลักษณ์ของเทนเซอร์
อินพุตสำหรับการดำเนินการ TensorFlow คือเอาต์พุตของการดำเนินการ TensorFlow อื่น วิธีการนี้ใช้เพื่อรับหมายเลขอ้างอิงสัญลักษณ์ที่แสดงถึงการคำนวณอินพุต
สาธารณะ SparseApplyAdadelta <T> สร้าง แบบคงที่ (ขอบเขต ขอบเขต , ตัวดำเนินการ <T> var, ตัวดำเนินการ <T> accum, ตัวดำเนิน การ <T> accumUpdate, ตัวดำเนินการ <T> lr, ตัวดำเนินการ <T> rho, ตัวดำเนินการ <T> เอปไซลอน, ตัวดำเนินการ <T > ผู้สำเร็จการศึกษา, ตัวดำเนินการ <? ขยาย TNumber > ดัชนี, ตัวเลือก... ตัวเลือก)
วิธีการจากโรงงานเพื่อสร้างคลาสที่รวมการดำเนินการ SparseApplyAdadelta ใหม่
พารามิเตอร์
| ขอบเขต | ขอบเขตปัจจุบัน |
|---|---|
| สะสม | ควรมาจากตัวแปร () |
| สะสมUpdate | : ควรมาจากตัวแปร() |
| ล | อัตราการเรียนรู้ ต้องเป็นสเกลาร์ |
| โร | ปัจจัยการสลายตัว ต้องเป็นสเกลาร์ |
| เอปไซลอน | ปัจจัยคงที่ ต้องเป็นสเกลาร์ |
| ผู้สำเร็จการศึกษา | การไล่ระดับสี |
| ดัชนี | เวกเตอร์ของดัชนีในมิติแรกของ var และ accum |
| ตัวเลือก | มีค่าแอตทริบิวต์ทางเลือก |
การส่งคืน
- อินสแตนซ์ใหม่ของ SparseApplyAdadelta
สาธารณะ SparseApplyAdadelta.Options useLocking แบบคงที่ (useLocking แบบบูลีน)
พารามิเตอร์
| ใช้ล็อค | หากเป็น True การอัปเดต var และ accum tensor จะได้รับการปกป้องด้วยการล็อค มิฉะนั้นพฤติกรรมจะไม่ได้กำหนดไว้ แต่อาจแสดงความขัดแย้งน้อยลง |
|---|
var: ควรมาจากตัวแปร ()
คลาสที่ซ้อนกัน
| ระดับ | SparseApplyAdadelta.Options | แอ็ตทริบิวต์ทางเลือกสำหรับ SparseApplyAdadelta | |
ค่าคงที่
| สตริง | OP_NAME | ชื่อของ op นี้ ซึ่งรู้จักกันในชื่อของเอ็นจิ้นหลัก TensorFlow |
วิธีการสาธารณะ
| เอาท์พุต <T> | เป็นเอาท์พุต () ส่งกลับค่าแฮนเดิลสัญลักษณ์ของเทนเซอร์ |
| คงที่ <T ขยาย TType > SparseApplyAdadelta <T> | สร้าง ( ขอบเขต ขอบเขต ตัวดำเนินการ <T> var, ตัวดำเนินการ <T> สะสม, ตัวดำเนินการ <T> accumUpdate, ตัวดำเนินการ <T> lr, ตัวดำเนินการ <T> rho, ตัวดำเนินการ <T> เอปไซลอน, ตัวดำเนินการ <T> ผู้สำเร็จการศึกษา, ตัวดำเนินการ <? ขยาย TNumber > ดัชนี ตัวเลือก... ตัวเลือก) วิธีการจากโรงงานเพื่อสร้างคลาสที่รวมการดำเนินการ SparseApplyAdadelta ใหม่ |
| เอาท์พุต <T> | ออก () เช่นเดียวกับ "var" |
| SparseApplyAdadelta.Options แบบคงที่ | useLocking (การใช้ล็อคแบบบูลีน) |
วิธีการสืบทอด
ค่าคงที่
สตริงสุดท้ายแบบคงที่สาธารณะ OP_NAME
ชื่อของ op นี้ ซึ่งรู้จักกันในชื่อของเอ็นจิ้นหลัก TensorFlow
วิธีการสาธารณะ
เอาท์ พุท สาธารณะ <T> asOutput ()
ส่งกลับค่าแฮนเดิลสัญลักษณ์ของเทนเซอร์
อินพุตสำหรับการดำเนินการ TensorFlow คือเอาต์พุตของการดำเนินการ TensorFlow อื่น วิธีการนี้ใช้เพื่อรับหมายเลขอ้างอิงสัญลักษณ์ที่แสดงถึงการคำนวณอินพุต
สาธารณะ SparseApplyAdadelta <T> สร้าง แบบคงที่ (ขอบเขต ขอบเขต , ตัวดำเนินการ <T> var, ตัวดำเนินการ <T> accum, ตัวดำเนิน การ <T> accumUpdate, ตัวดำเนินการ <T> lr, ตัวดำเนินการ <T> rho, ตัวดำเนินการ <T> เอปไซลอน, ตัวดำเนินการ <T > ผู้สำเร็จการศึกษา, ตัวดำเนินการ <? ขยาย TNumber > ดัชนี, ตัวเลือก... ตัวเลือก)
วิธีการจากโรงงานเพื่อสร้างคลาสที่รวมการดำเนินการ SparseApplyAdadelta ใหม่
พารามิเตอร์
| ขอบเขต | ขอบเขตปัจจุบัน |
|---|---|
| สะสม | ควรมาจากตัวแปร () |
| สะสมUpdate | : ควรมาจากตัวแปร() |
| ล | อัตราการเรียนรู้ ต้องเป็นสเกลาร์ |
| โร | ปัจจัยการสลายตัว ต้องเป็นสเกลาร์ |
| เอปไซลอน | ปัจจัยคงที่ ต้องเป็นสเกลาร์ |
| ผู้สำเร็จการศึกษา | การไล่ระดับสี |
| ดัชนี | เวกเตอร์ของดัชนีในมิติแรกของ var และ accum |
| ตัวเลือก | มีค่าแอตทริบิวต์ทางเลือก |
การส่งคืน
- อินสแตนซ์ใหม่ของ SparseApplyAdadelta
สาธารณะ SparseApplyAdadelta.Options useLocking แบบคงที่ (useLocking แบบบูลีน)
พารามิเตอร์
| ใช้ล็อค | หากเป็น True การอัปเดต var และ accum tensor จะได้รับการปกป้องด้วยการล็อค มิฉะนั้นพฤติกรรมจะไม่ได้กำหนดไว้ แต่อาจแสดงความขัดแย้งน้อยลง |
|---|