SparseApplyAdagrad

คลาสสุดท้ายสาธารณะ SparseApplyAdagrad

อัปเดตรายการที่เกี่ยวข้องใน '*var' และ '*accum' ตามรูปแบบ adagrad

นั่นคือสำหรับแถวที่เราได้ grad เราอัพเดต var และ accum ดังนี้: accum+=gradgradvar=lrgrad(1/sqrt(accum))

คลาสที่ซ้อนกัน

ระดับ SparseApplyAdagrad.ตัวเลือก แอ็ตทริบิวต์ทางเลือกสำหรับ SparseApplyAdagrad

ค่าคงที่

สตริง OP_NAME ชื่อของ op นี้ ซึ่งรู้จักกันในชื่อของเอ็นจิ้นหลัก TensorFlow

วิธีการสาธารณะ

เอาท์พุต <T>
เป็นเอาท์พุต ()
ส่งกลับค่าแฮนเดิลสัญลักษณ์ของเทนเซอร์
คงที่ <T ขยาย TType > SparseApplyAdagrad <T>
สร้าง (ขอบเขต ขอบเขต , ตัวดำเนินการ <T> var, ตัวดำเนินการ <T> สะสม, ตัวดำเนิน การ <T> lr, ตัวดำเนินการ <T> เอปไซลอน, ตัวดำเนินการ <T> ผู้สำเร็จการศึกษา, ตัวดำเนินการ <? ขยาย TNumber > ดัชนี, ตัวเลือก... ตัวเลือก)
วิธีการจากโรงงานเพื่อสร้างคลาสที่รวมการดำเนินการ SparseApplyAdagrad ใหม่
เอาท์พุต <T>
ออก ()
เช่นเดียวกับ "var"
SparseApplyAdagrad.Options แบบคงที่
updateSlots (บูลีน updateSlots)
SparseApplyAdagrad.Options แบบคงที่
useLocking (การใช้ล็อคแบบบูลีน)

วิธีการสืบทอด

org.tensorflow.op.RawOp
บูลีนสุดท้าย
เท่ากับ (วัตถุ obj)
int สุดท้าย
การดำเนินการ
สหกรณ์ ()
ส่งกลับหน่วยการคำนวณนี้เป็นการ Operation เดียว
สตริงสุดท้าย
บูลีน
เท่ากับ (วัตถุ arg0)
คลาสสุดท้าย<?>
รับคลาส ()
ภายใน
แฮชโค้ด ()
โมฆะสุดท้าย
แจ้ง ()
โมฆะสุดท้าย
แจ้งทั้งหมด ()
สตริง
toString ()
โมฆะสุดท้าย
รอสักครู่ (ยาว arg0, int arg1)
โมฆะสุดท้าย
รอ (ยาว arg0)
โมฆะสุดท้าย
รอ ()
org.tensorflow.op.Op
บทคัดย่อ ExecutionEnvironment
สิ่งแวดล้อม ()
ส่งคืนสภาพแวดล้อมการดำเนินการที่ op นี้ถูกสร้างขึ้น
การดำเนินการ ที่เป็นนามธรรม
สหกรณ์ ()
ส่งกลับหน่วยการคำนวณนี้เป็นการ Operation เดียว
org.tensorflow.Operand
เอาท์พุท นามธรรม <T>
เป็นเอาท์พุต ()
ส่งกลับค่าแฮนเดิลสัญลักษณ์ของเทนเซอร์
นามธรรมต
แอสเทนเซอร์ ()
ส่งกลับเทนเซอร์ที่ตัวถูกดำเนินการนี้
รูปร่าง นามธรรม
รูปร่าง ()
ส่งกลับรูปร่าง (อาจทราบได้บางส่วน) ของเทนเซอร์ที่อ้างอิงโดย Output ของตัวถูกดำเนินการนี้
คลาสนามธรรม<T>
พิมพ์ ()
ส่งกลับประเภทเทนเซอร์ของตัวถูกดำเนินการนี้
org.tensorflow.ndarray.Shaped
บทคัดย่อ
รูปร่าง นามธรรม
ยาวเป็นนามธรรม
ขนาด ()
คำนวณและส่งกลับขนาดรวมของคอนเทนเนอร์นี้เป็นจำนวนค่า

ค่าคงที่

สตริงสุดท้ายแบบคงที่สาธารณะ OP_NAME

ชื่อของ op นี้ ซึ่งรู้จักกันในชื่อของเอ็นจิ้นหลัก TensorFlow

ค่าคงที่: "SparseApplyAdagradV2"

วิธีการสาธารณะ

เอาท์พุท สาธารณะ <T> asOutput ()

ส่งกลับค่าแฮนเดิลสัญลักษณ์ของเทนเซอร์

อินพุตสำหรับการดำเนินการ TensorFlow คือเอาต์พุตของการดำเนินการ TensorFlow อื่น วิธีการนี้ใช้เพื่อรับหมายเลขอ้างอิงสัญลักษณ์ที่แสดงถึงการคำนวณอินพุต

สาธารณะ SparseApplyAdagrad <T> สร้าง แบบคงที่ (ขอบเขต ขอบเขต , ตัวดำเนินการ <T> var, ตัวดำเนินการ <T> accum, ตัวดำเนินการ <T> lr, ตัวดำเนินการ <T> เอปไซลอน, ตัวดำเนินการ <T> ผู้สำเร็จการศึกษา, ตัวดำเนินการ <? ขยาย TNumber > ดัชนี, ตัวเลือก ... ตัวเลือก)

วิธีการจากโรงงานเพื่อสร้างคลาสที่รวมการดำเนินการ SparseApplyAdagrad ใหม่

พารามิเตอร์
ขอบเขต ขอบเขตปัจจุบัน
var ควรมาจากตัวแปร ()
สะสม ควรมาจากตัวแปร ()
อัตราการเรียนรู้ ต้องเป็นสเกลาร์
เอปไซลอน ปัจจัยคงที่ ต้องเป็นสเกลาร์
ผู้สำเร็จการศึกษา การไล่ระดับสี
ดัชนี เวกเตอร์ของดัชนีในมิติแรกของ var และ accum
ตัวเลือก มีค่าแอตทริบิวต์ทางเลือก
การส่งคืน
  • อินสแตนซ์ใหม่ของ SparseApplyAdagrad

เอาท์พุท สาธารณะ <T> ออก ()

เช่นเดียวกับ "var"

สาธารณะ SparseApplyAdagrad.Options updateSlots แบบคงที่ (Boolean updateSlots)

สาธารณะ SparseApplyAdagrad.Options useLocking แบบคงที่ (useLocking แบบบูลีน)

พารามิเตอร์
ใช้ล็อค หากเป็น "จริง" การอัปเดต var และ accum tensor จะได้รับการปกป้องด้วยการล็อค มิฉะนั้นพฤติกรรมจะไม่ได้กำหนดไว้ แต่อาจแสดงความขัดแย้งน้อยลง