genel statik son sınıf GPUOptions.Experimental
Protobuf tipi tensorflow.GPUOptions.Experimental
İç İçe Sınıflar
sınıf | GPUOptions.Experimental.Builder | Protobuf tipi tensorflow.GPUOptions.Experimental | |
sınıf | GPUOptions.Experimental.VirtualDevices | Configuration for breaking down a visible GPU into multiple "virtual" devices. | |
arayüz | GPUOptions.Experimental.VirtualDevicesOrBuilder |
Sabitler
Genel Yöntemler
boolean | eşittir (Nesne nesnesi) |
Sicim | getCollectiveRingOrder () If non-empty, defines a good GPU ring order on a single worker based on device interconnect. |
com.google.protobuf.ByteString | getCollectiveRingOrderBytes () If non-empty, defines a good GPU ring order on a single worker based on device interconnect. |
Statik GPUSeçenekleri.Deneysel | |
GPUOptions.Deneysel | |
final statik com.google.protobuf.Descriptors.Descriptor | |
int | getKernelTrackerMaxBytes () If kernel_tracker_max_bytes = n > 0, then a tracking event is inserted after every series of kernels allocating a sum of memory >= n. |
int | getKernelTrackerMaxInterval () Parameters for GPUKernelTracker. |
int | getKernelTrackerMaxPending () If kernel_tracker_max_pending > 0 then no more than this many tracking events can be outstanding at a time. |
int | getNumDevToDevCopyStreams () If > 1, the number of device-to-device copy streams to create for each GPUDevice. |
int | |
boolean | getTimestampedAllocator () If true then extra work is done by GPUDevice and GPUBFCAllocator to keep track of when GPU memory is freed and when kernels actually complete so that we can know when a nominally free memory chunk is really not subject to pending use. |
final com.google.protobuf.UnknownFieldSet | |
boolean | getUseUnifiedMemory () If true, uses CUDA unified memory for memory allocations. |
GPUOptions.Experimental.VirtualDevices | getVirtualDevices (int dizini) The multi virtual device settings. |
int | getVirtualDevicesCount () The multi virtual device settings. |
Liste< GPUOptions.Experimental.VirtualDevices > | getVirtualDevicesList () The multi virtual device settings. |
GPUOptions.Experimental.VirtualDevicesOrBuilder | getVirtualDevicesOrBuilder (int dizini) The multi virtual device settings. |
Liste<? GPUOptions.Experimental.VirtualDevicesOrBuilder'ı genişletir > | getVirtualDevicesOrBuilderList () The multi virtual device settings. |
int | hashKodu () |
son boole değeri | Başlatıldı () |
statik GPUOptions.Experimental.Builder | newBuilder ( GPUOptions.Deneysel prototip) |
statik GPUOptions.Experimental.Builder | yeniİnşaatçı () |
GPUOptions.Experimental.Builder | |
Statik GPUSeçenekleri.Deneysel | parseDelimitedFrom (InputStream girişi) |
Statik GPUSeçenekleri.Deneysel | parseDelimitedFrom (InputStream girişi, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
Statik GPUSeçenekleri.Deneysel | parseFrom (ByteBuffer verileri) |
Statik GPUSeçenekleri.Deneysel | parseFrom (com.google.protobuf.CodedInputStream girişi, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
Statik GPUSeçenekleri.Deneysel | parseFrom (ByteBuffer verileri, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
Statik GPUSeçenekleri.Deneysel | ayrıştırmaFrom (com.google.protobuf.CodedInputStream girişi) |
Statik GPUSeçenekleri.Deneysel | parseFrom (byte[] verileri, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
Statik GPUSeçenekleri.Deneysel | ayrıştırmaFrom (com.google.protobuf.ByteString verileri) |
Statik GPUSeçenekleri.Deneysel | parseFrom (InputStream girişi, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
Statik GPUSeçenekleri.Deneysel | parseFrom (com.google.protobuf.ByteString verileri, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
statik | ayrıştırıcı () |
GPUOptions.Experimental.Builder | inşaatçıya () |
geçersiz | writeTo (com.google.protobuf.CodedOutputStream çıkışı) |
Kalıtsal Yöntemler
Sabitler
genel statik final int COLLECTIVE_RING_ORDER_FIELD_NUMBER
Sabit Değer: 4
genel statik final int KERNEL_TRACKER_MAX_BYTES_FIELD_NUMBER
Sabit Değer: 8
genel statik final int KERNEL_TRACKER_MAX_INTERVAL_FIELD_NUMBER
Sabit Değer: 7
genel statik final int KERNEL_TRACKER_MAX_PENDING_FIELD_NUMBER
Sabit Değer: 9
genel statik son int NUM_DEV_TO_DEV_COPY_STREAMS_FIELD_NUMBER
Sabit Değer: 3
genel statik final int TIMESTAMPED_ALLOCATOR_FIELD_NUMBER
Sabit Değer: 5
genel statik final int USE_UNIFIED_MEMORY_FIELD_NUMBER
Sabit Değer: 2
genel statik final int VIRTUAL_DEVICES_FIELD_NUMBER
Sabit Değer: 1
Genel Yöntemler
genel boole eşittir (Object obj)
genel Dize getCollectiveRingOrder ()
If non-empty, defines a good GPU ring order on a single worker based on device interconnect. This assumes that all workers have the same GPU topology. Specify as a comma-separated string, e.g. "3,2,1,0,7,6,5,4". This ring order is used by the RingReducer implementation of CollectiveReduce, and serves as an override to automatic ring order generation in OrderTaskDeviceMap() during CollectiveParam resolution.
string collective_ring_order = 4;
public com.google.protobuf.ByteString getCollectiveRingOrderBytes ()
If non-empty, defines a good GPU ring order on a single worker based on device interconnect. This assumes that all workers have the same GPU topology. Specify as a comma-separated string, e.g. "3,2,1,0,7,6,5,4". This ring order is used by the RingReducer implementation of CollectiveReduce, and serves as an override to automatic ring order generation in OrderTaskDeviceMap() during CollectiveParam resolution.
string collective_ring_order = 4;
public static final com.google.protobuf.Descriptors.Descriptor getDescriptor ()
public int getKernelTrackerMaxBytes ()
If kernel_tracker_max_bytes = n > 0, then a tracking event is inserted after every series of kernels allocating a sum of memory >= n. If one kernel allocates b * n bytes, then one event will be inserted after it, but it will count as b against the pending limit.
int32 kernel_tracker_max_bytes = 8;
public int getKernelTrackerMaxInterval ()
Parameters for GPUKernelTracker. By default no kernel tracking is done. Note that timestamped_allocator is only effective if some tracking is specified. If kernel_tracker_max_interval = n > 0, then a tracking event is inserted after every n kernels without an event.
int32 kernel_tracker_max_interval = 7;
public int getKernelTrackerMaxPending ()
If kernel_tracker_max_pending > 0 then no more than this many tracking events can be outstanding at a time. An attempt to launch an additional kernel will stall until an event completes.
int32 kernel_tracker_max_pending = 9;
public int getNumDevToDevCopyStreams ()
If > 1, the number of device-to-device copy streams to create for each GPUDevice. Default value is 0, which is automatically converted to 1.
int32 num_dev_to_dev_copy_streams = 3;
halk getParserForType ()
public int getSerializedSize ()
genel boolean getTimestampedAllocator ()
If true then extra work is done by GPUDevice and GPUBFCAllocator to keep track of when GPU memory is freed and when kernels actually complete so that we can know when a nominally free memory chunk is really not subject to pending use.
bool timestamped_allocator = 5;
genel final com.google.protobuf.UnknownFieldSet getUnknownFields ()
genel boolean getUseUnifiedMemory ()
If true, uses CUDA unified memory for memory allocations. If per_process_gpu_memory_fraction option is greater than 1.0, then unified memory is used regardless of the value for this field. See comments for per_process_gpu_memory_fraction field for more details and requirements of the unified memory. This option is useful to oversubscribe memory if multiple processes are sharing a single GPU while individually using less than 1.0 per process memory fraction.
bool use_unified_memory = 2;
genel GPUOptions.Experimental.VirtualDevices getVirtualDevices (int dizini)
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
public int getVirtualDevicesCount ()
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
genel Liste< GPUOptions.Experimental.VirtualDevices > getVirtualDevicesList ()
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
genel GPUOptions.Experimental.VirtualDevicesOrBuilder getVirtualDevicesOrBuilder (int dizini)
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
genel liste<? GPUOptions.Experimental.VirtualDevicesOrBuilder > getVirtualDevicesOrBuilderList () öğesini genişletir
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
genel int hashCode ()
genel final boolean isInitialized ()
genel statik GPUOptions.Deneysel ayrıştırmaDelimitedFrom (InputStream girişi, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Atar
IOİstisnası |
---|
genel statik GPUOptions.Deneysel ayrıştırmaFrom (ByteBuffer verileri)
Atar
Geçersiz ProtokolBufferException |
---|
genel statik GPUOptions.Deneysel ayrıştırmaFrom (com.google.protobuf.CodedInputStream girişi, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Atar
IOİstisnası |
---|
genel statik GPUOptions.Deneysel ayrıştırmaFrom (ByteBuffer verileri, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Atar
Geçersiz ProtokolBufferException |
---|
genel statik GPUOptions.Deneysel ayrıştırmaFrom (com.google.protobuf.CodedInputStream girişi)
Atar
IOİstisnası |
---|
genel statik GPUOptions.Deneysel ayrıştırmaFrom (bayt[] verileri, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Atar
Geçersiz ProtokolBufferException |
---|
genel statik GPUOptions.Deneysel ayrıştırmaFrom (com.google.protobuf.ByteString verileri)
Atar
Geçersiz ProtokolBufferException |
---|
genel statik GPUOptions.Deneysel ayrıştırmaFrom (InputStream girişi, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Atar
IOİstisnası |
---|
genel statik GPUOptions.Deneysel ayrıştırmaFrom (com.google.protobuf.ByteString verileri, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Atar
Geçersiz ProtokolBufferException |
---|
genel statik ayrıştırıcı ()
genel geçersiz writeTo (com.google.protobuf.CodedOutputStream çıkışı)
Atar
IOİstisnası |
---|