सार्वजनिक इंटरफ़ेस GraphOptionsOrBuilder
ज्ञात अप्रत्यक्ष उपवर्ग |
सार्वजनिक तरीके
अमूर्त लंबा | getBuildCostModel () The number of steps to run before returning a cost model detailing the memory usage and performance of each node of the graph. |
अमूर्त लंबा | getBuildCostModelAfter () The number of steps to skip before collecting statistics for the cost model. |
अमूर्त बूलियन | getEnableBfloat16Sendrecv () If true, transfer float values between processes as bfloat16. |
अमूर्त बूलियन | getEnableRecvScheduling () If true, use control flow to schedule the activation of Recv nodes. |
अमूर्त बूलियन | getInferShapes () Annotate each Node with Op output shape data, to the extent it can be statically inferred. |
सार अनुकूलक विकल्प | गेटऑप्टिमाइज़रऑप्शंस () Options controlling how graph is optimized. |
सार ऑप्टिमाइज़रऑप्शनऑरबिल्डर | getOptimizerOptionsOrBuilder () Options controlling how graph is optimized. |
अमूर्त बूलियन | getPlacePrunedGraph () Only place the subgraphs that are run, rather than the entire graph. |
सार रिवाइटरकॉन्फिग | getRewriteOptions () Options that control the type and amount of graph rewriting. |
सार रिवाइटरकॉन्फिगऑरबिल्डर | getRewriteOptionsOrBuilder () Options that control the type and amount of graph rewriting. |
सार इंट | getTimelineStep () If > 0, record a timeline every this many steps. |
अमूर्त बूलियन | हैऑप्टिमाइज़रऑप्शंस () Options controlling how graph is optimized. |
अमूर्त बूलियन | hasRewriteOptions () Options that control the type and amount of graph rewriting. |
सार्वजनिक तरीके
सार्वजनिक सार लंबा getBuildCostModel ()
The number of steps to run before returning a cost model detailing the memory usage and performance of each node of the graph. 0 means no cost model.
int64 build_cost_model = 4;
सार्वजनिक सार लंबा getBuildCostModelAfter ()
The number of steps to skip before collecting statistics for the cost model.
int64 build_cost_model_after = 9;
सार्वजनिक सार बूलियन getEnableBfloat16Sendrecv ()
If true, transfer float values between processes as bfloat16.
bool enable_bfloat16_sendrecv = 7;
सार्वजनिक सार बूलियन getEnableRecvScheduling ()
If true, use control flow to schedule the activation of Recv nodes. (Currently ignored.)
bool enable_recv_scheduling = 2;
सार्वजनिक सार बूलियन getInferShapes ()
Annotate each Node with Op output shape data, to the extent it can be statically inferred.
bool infer_shapes = 5;
सार्वजनिक सार ऑप्टिमाइज़रऑप्शंस getऑप्टिमाइज़रऑप्शंस ()
Options controlling how graph is optimized.
.tensorflow.OptimizerOptions optimizer_options = 3;
सार्वजनिक सार ऑप्टिमाइज़रऑप्शनऑरबिल्डर getऑप्टिमाइज़रऑप्शनऑरबिल्डर ()
Options controlling how graph is optimized.
.tensorflow.OptimizerOptions optimizer_options = 3;
सार्वजनिक सार बूलियन getPlacePrunedGraph ()
Only place the subgraphs that are run, rather than the entire graph. This is useful for interactive graph building, where one might produce graphs that cannot be placed during the debugging process. In particular, it allows the client to continue work in a session after adding a node to a graph whose placement constraints are unsatisfiable.
bool place_pruned_graph = 6;
सार्वजनिक सार रिवाइटर कॉन्फिग getRewriteOptions ()
Options that control the type and amount of graph rewriting. Not currently configurable via the public Python API (i.e. there is no API stability guarantee if you import RewriterConfig explicitly).
.tensorflow.RewriterConfig rewrite_options = 10;
सार्वजनिक सार RewriterConfigOrBuilder getRewriteOptionsOrBuilder ()
Options that control the type and amount of graph rewriting. Not currently configurable via the public Python API (i.e. there is no API stability guarantee if you import RewriterConfig explicitly).
.tensorflow.RewriterConfig rewrite_options = 10;
सार्वजनिक सार int getTimelineStep ()
If > 0, record a timeline every this many steps. EXPERIMENTAL: This currently has no effect in MasterSession.
int32 timeline_step = 8;
सार्वजनिक सार बूलियन में ऑप्टिमाइज़र विकल्प हैं ()
Options controlling how graph is optimized.
.tensorflow.OptimizerOptions optimizer_options = 3;
सार्वजनिक सार बूलियन hasRewriteOptions ()
Options that control the type and amount of graph rewriting. Not currently configurable via the public Python API (i.e. there is no API stability guarantee if you import RewriterConfig explicitly).
.tensorflow.RewriterConfig rewrite_options = 10;