SparseSoftmaxCrossEntropyWithLogits
Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
Softmax çapraz entropi maliyetini ve geri yayılma gradyanlarını hesaplar.
'SoftmaxCrossEntropyWithLogits'ten farklı olarak bu işlem, etiket olasılıkları matrisini kabul etmez, bunun yerine özellik satırı başına tek bir etiketi kabul eder. Bu etiketin verilen satır için 1,0 olasılığa sahip olduğu kabul edilir.
Girdiler logitlerdir, olasılıklar değil.
Sabitler
Sicim | OP_NAME | Bu operasyonun TensorFlow çekirdek motoru tarafından bilinen adı |
Kalıtsal Yöntemler
Java.lang.Object sınıfından boolean | eşittir (Nesne arg0) |
son Sınıf<?> | getClass () |
int | hash kodu () |
son boşluk | bildir () |
son boşluk | tümünü bildir () |
Sicim | toString () |
son boşluk | bekle (uzun arg0, int arg1) |
son boşluk | bekle (uzun arg0) |
son boşluk | Beklemek () |
Sabitler
genel statik son Dize OP_NAME
Bu operasyonun TensorFlow çekirdek motoru tarafından bilinen adı
Sabit Değer: "SparseSoftmaxCrossEntropyWithLogits"
Genel Yöntemler
genel Çıkış <T> backprop ()
geri yayılan degradeler (batch_size x num_classes matrisi).
Yeni bir SparseSoftmaxCrossEntropyWithLogits işlemini saran bir sınıf oluşturmanın fabrika yöntemi.
Parametreler
kapsam | mevcut kapsam |
---|
özellikler | parti_boyutu x sınıf_sayısı matrisi |
---|
etiketler | Batch_size vektörü, değerleri [0, num_classes). Bu, verilen mini parti girişinin etiketidir. |
---|
İadeler
- SparseSoftmaxCrossEntropyWithLogits'in yeni bir örneği
genel Çıkış <T> kaybı ()
Örnek başına kayıp (batch_size vektörü).
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-26 UTC.
[null,null,["Son güncelleme tarihi: 2025-07-26 UTC."],[],[],null,["# SparseSoftmaxCrossEntropyWithLogits\n\npublic final class **SparseSoftmaxCrossEntropyWithLogits** \nComputes softmax cross entropy cost and gradients to backpropagate.\n\n\nUnlike \\`SoftmaxCrossEntropyWithLogits\\`, this operation does not accept\na matrix of label probabilities, but rather a single label per row\nof features. This label is considered to have probability 1.0 for the\ngiven row.\n\n\nInputs are the logits, not probabilities.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n### Constants\n\n|--------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------|\n| String | [OP_NAME](/jvm/api_docs/java/org/tensorflow/op/nn/raw/SparseSoftmaxCrossEntropyWithLogits#OP_NAME) | The name of this op, as known by TensorFlow core engine |\n\n### Public Methods\n\n|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e | [backprop](/jvm/api_docs/java/org/tensorflow/op/nn/raw/SparseSoftmaxCrossEntropyWithLogits#backprop())() backpropagated gradients (batch_size x num_classes matrix). |\n| static \\\u003cT extends [TNumber](/jvm/api_docs/java/org/tensorflow/types/family/TNumber)\\\u003e [SparseSoftmaxCrossEntropyWithLogits](/jvm/api_docs/java/org/tensorflow/op/nn/raw/SparseSoftmaxCrossEntropyWithLogits)\\\u003cT\\\u003e | [create](/jvm/api_docs/java/org/tensorflow/op/nn/raw/SparseSoftmaxCrossEntropyWithLogits#create(org.tensorflow.op.Scope, org.tensorflow.Operand\u003cT\u003e, org.tensorflow.Operand\u003c? extends org.tensorflow.types.family.TNumber\u003e))([Scope](/jvm/api_docs/java/org/tensorflow/op/Scope) scope, [Operand](/jvm/api_docs/java/org/tensorflow/Operand)\\\u003cT\\\u003e features, [Operand](/jvm/api_docs/java/org/tensorflow/Operand)\\\u003c? extends [TNumber](/jvm/api_docs/java/org/tensorflow/types/family/TNumber)\\\u003e labels) Factory method to create a class wrapping a new SparseSoftmaxCrossEntropyWithLogits operation. |\n| [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e | [loss](/jvm/api_docs/java/org/tensorflow/op/nn/raw/SparseSoftmaxCrossEntropyWithLogits#loss())() Per example loss (batch_size vector). |\n\n### Inherited Methods\n\nFrom class [org.tensorflow.op.RawOp](/jvm/api_docs/java/org/tensorflow/op/RawOp) \n\n|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| final boolean | [equals](/jvm/api_docs/java/org/tensorflow/op/RawOp#equals(java.lang.Object))(Object obj) |\n| final int | [hashCode](/jvm/api_docs/java/org/tensorflow/op/RawOp#hashCode())() |\n| [Operation](/jvm/api_docs/java/org/tensorflow/Operation) | [op](/jvm/api_docs/java/org/tensorflow/op/RawOp#op())() Return this unit of computation as a single [Operation](/jvm/api_docs/java/org/tensorflow/Operation). |\n| final String | [toString](/jvm/api_docs/java/org/tensorflow/op/RawOp#toString())() |\n\nFrom class java.lang.Object \n\n|------------------|---------------------------|\n| boolean | equals(Object arg0) |\n| final Class\\\u003c?\\\u003e | getClass() |\n| int | hashCode() |\n| final void | notify() |\n| final void | notifyAll() |\n| String | toString() |\n| final void | wait(long arg0, int arg1) |\n| final void | wait(long arg0) |\n| final void | wait() |\n\nFrom interface [org.tensorflow.op.Op](/jvm/api_docs/java/org/tensorflow/op/Op) \n\n|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| abstract [ExecutionEnvironment](/jvm/api_docs/java/org/tensorflow/ExecutionEnvironment) | [env](/jvm/api_docs/java/org/tensorflow/op/Op#env())() Return the execution environment this op was created in. |\n| abstract [Operation](/jvm/api_docs/java/org/tensorflow/Operation) | [op](/jvm/api_docs/java/org/tensorflow/op/Op#op())() Return this unit of computation as a single [Operation](/jvm/api_docs/java/org/tensorflow/Operation). |\n\nConstants\n---------\n\n#### public static final String\n**OP_NAME**\n\nThe name of this op, as known by TensorFlow core engine \nConstant Value: \"SparseSoftmaxCrossEntropyWithLogits\"\n\nPublic Methods\n--------------\n\n#### public [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e\n**backprop**\n()\n\nbackpropagated gradients (batch_size x num_classes matrix). \n\n#### public static [SparseSoftmaxCrossEntropyWithLogits](/jvm/api_docs/java/org/tensorflow/op/nn/raw/SparseSoftmaxCrossEntropyWithLogits)\\\u003cT\\\u003e\n**create**\n([Scope](/jvm/api_docs/java/org/tensorflow/op/Scope) scope, [Operand](/jvm/api_docs/java/org/tensorflow/Operand)\\\u003cT\\\u003e features, [Operand](/jvm/api_docs/java/org/tensorflow/Operand)\\\u003c? extends [TNumber](/jvm/api_docs/java/org/tensorflow/types/family/TNumber)\\\u003e labels)\n\nFactory method to create a class wrapping a new SparseSoftmaxCrossEntropyWithLogits operation. \n\n##### Parameters\n\n| scope | current scope |\n| features | batch_size x num_classes matrix |\n| labels | batch_size vector with values in \\[0, num_classes). This is the label for the given minibatch entry. |\n|----------|------------------------------------------------------------------------------------------------------|\n\n##### Returns\n\n- a new instance of SparseSoftmaxCrossEntropyWithLogits \n\n#### public [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e\n**loss**\n()\n\nPer example loss (batch_size vector)."]]