Svd
Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
Kendine eş matrislerden oluşan bir grubun öz ayrışmasını hesaplar
(Not: Yalnızca gerçek girişler desteklenir).
Tensördeki en içteki M'ye N matrislerinin özdeğerlerini ve özvektörlerini tensör[...,:,:] = u[..., :, :] olacak şekilde hesaplar * Diag(s[..., :] ) * Devriği(v[...,:,:]).
Sabitler
Sicim | OP_NAME | Bu operasyonun TensorFlow çekirdek motoru tarafından bilinen adı |
Genel Yöntemler
statik <T TType'ı genişletir > Svd <T> | create ( Kapsam kapsamı, Operand <T> a, Long maxIter, Float epsilon, String sensitiveConfig) Yeni bir Svd işlemini saran bir sınıf oluşturmak için fabrika yöntemi. |
Çıkış <T> | |
Çıkış <T> | sen () Sol tekil vektörler. |
Çıkış <T> | v () Sağ tekil vektörler. |
Kalıtsal Yöntemler
Java.lang.Object sınıfından boolean | eşittir (Nesne arg0) |
son Sınıf<?> | getClass () |
int | hash kodu () |
son boşluk | bildir () |
son boşluk | tümünü bildir () |
Sicim | toString () |
son boşluk | bekle (uzun arg0, int arg1) |
son boşluk | bekle (uzun arg0) |
son boşluk | Beklemek () |
Sabitler
genel statik son Dize OP_NAME
Bu operasyonun TensorFlow çekirdek motoru tarafından bilinen adı
Sabit Değer: "XlaSvd"
Genel Yöntemler
public static Svd <T> create ( Kapsam kapsamı, Operand <T> a, Long maxIter, Float epsilon, String sensitiveConfig)
Yeni bir Svd işlemini saran bir sınıf oluşturmak için fabrika yöntemi.
Parametreler
kapsam | mevcut kapsam |
---|
A | giriş tensörü. |
---|
maxIter | maksimum tarama güncellemesi sayısı, yani alt parametreye bağlı olarak alt üçgen kısmın tamamı veya üst üçgen kısmı. Sezgisel olarak, pratikte yaklaşık olarak log(min (M, N)) taramalara ihtiyaç duyulduğu ileri sürülmüştür (Ref: Golub & van Loan "Matrix Computation"). |
---|
epsilon | tolerans oranı. |
---|
hassasYapılandırma | serileştirilmiş bir xla::PrecisionConfig protokolü. |
---|
genel Çıkış <T> s ()
Tekil değerler. Değerler ters büyüklük sırasına göre sıralanır; dolayısıyla s[..., 0] en büyük değerdir, s[..., 1] ikinci en büyük değerdir, vb.
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-27 UTC.
[null,null,["Son güncelleme tarihi: 2025-07-27 UTC."],[],[],null,["# Svd\n\npublic final class **Svd** \nComputes the eigen decomposition of a batch of self-adjoint matrices\n\n\n(Note: Only real inputs are supported).\n\n\nComputes the eigenvalues and eigenvectors of the innermost M-by-N matrices in\ntensor such that tensor\\[...,:,:\\] = u\\[..., :, :\\] \\* Diag(s\\[..., :\\]) \\* Transpose(v\\[...,:,:\\]).\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n### Constants\n\n|--------|-----------------------------------------------------------------|---------------------------------------------------------|\n| String | [OP_NAME](/jvm/api_docs/java/org/tensorflow/op/xla/Svd#OP_NAME) | The name of this op, as known by TensorFlow core engine |\n\n### Public Methods\n\n|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| static \\\u003cT extends [TType](/jvm/api_docs/java/org/tensorflow/types/family/TType)\\\u003e [Svd](/jvm/api_docs/java/org/tensorflow/op/xla/Svd)\\\u003cT\\\u003e | [create](/jvm/api_docs/java/org/tensorflow/op/xla/Svd#create(org.tensorflow.op.Scope, org.tensorflow.Operand\u003cT\u003e, java.lang.Long, java.lang.Float, java.lang.String))([Scope](/jvm/api_docs/java/org/tensorflow/op/Scope) scope, [Operand](/jvm/api_docs/java/org/tensorflow/Operand)\\\u003cT\\\u003e a, Long maxIter, Float epsilon, String precisionConfig) Factory method to create a class wrapping a new Svd operation. |\n| [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e | [s](/jvm/api_docs/java/org/tensorflow/op/xla/Svd#s())() Singular values. |\n| [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e | [u](/jvm/api_docs/java/org/tensorflow/op/xla/Svd#u())() Left singular vectors. |\n| [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e | [v](/jvm/api_docs/java/org/tensorflow/op/xla/Svd#v())() Right singular vectors. |\n\n### Inherited Methods\n\nFrom class [org.tensorflow.op.RawOp](/jvm/api_docs/java/org/tensorflow/op/RawOp) \n\n|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| final boolean | [equals](/jvm/api_docs/java/org/tensorflow/op/RawOp#equals(java.lang.Object))(Object obj) |\n| final int | [hashCode](/jvm/api_docs/java/org/tensorflow/op/RawOp#hashCode())() |\n| [Operation](/jvm/api_docs/java/org/tensorflow/Operation) | [op](/jvm/api_docs/java/org/tensorflow/op/RawOp#op())() Return this unit of computation as a single [Operation](/jvm/api_docs/java/org/tensorflow/Operation). |\n| final String | [toString](/jvm/api_docs/java/org/tensorflow/op/RawOp#toString())() |\n\nFrom class java.lang.Object \n\n|------------------|---------------------------|\n| boolean | equals(Object arg0) |\n| final Class\\\u003c?\\\u003e | getClass() |\n| int | hashCode() |\n| final void | notify() |\n| final void | notifyAll() |\n| String | toString() |\n| final void | wait(long arg0, int arg1) |\n| final void | wait(long arg0) |\n| final void | wait() |\n\nFrom interface [org.tensorflow.op.Op](/jvm/api_docs/java/org/tensorflow/op/Op) \n\n|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| abstract [ExecutionEnvironment](/jvm/api_docs/java/org/tensorflow/ExecutionEnvironment) | [env](/jvm/api_docs/java/org/tensorflow/op/Op#env())() Return the execution environment this op was created in. |\n| abstract [Operation](/jvm/api_docs/java/org/tensorflow/Operation) | [op](/jvm/api_docs/java/org/tensorflow/op/Op#op())() Return this unit of computation as a single [Operation](/jvm/api_docs/java/org/tensorflow/Operation). |\n\nConstants\n---------\n\n#### public static final String\n**OP_NAME**\n\nThe name of this op, as known by TensorFlow core engine \nConstant Value: \"XlaSvd\"\n\nPublic Methods\n--------------\n\n#### public static [Svd](/jvm/api_docs/java/org/tensorflow/op/xla/Svd)\\\u003cT\\\u003e\n**create**\n([Scope](/jvm/api_docs/java/org/tensorflow/op/Scope) scope, [Operand](/jvm/api_docs/java/org/tensorflow/Operand)\\\u003cT\\\u003e a, Long maxIter, Float epsilon, String precisionConfig)\n\nFactory method to create a class wrapping a new Svd operation. \n\n##### Parameters\n\n| scope | current scope |\n| a | the input tensor. |\n| maxIter | maximum number of sweep update, i.e., the whole lower triangular part or upper triangular part based on parameter lower. Heuristically, it has been argued that approximately log(min (M, N)) sweeps are needed in practice (Ref: Golub \\& van Loan \"Matrix Computation\"). |\n| epsilon | the tolerance ratio. |\n| precisionConfig | a serialized xla::PrecisionConfig proto. |\n|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n\n##### Returns\n\n- a new instance of Svd \n\n#### public [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e\n**s**\n()\n\nSingular values. The values are sorted in reverse order of magnitude, so\ns\\[..., 0\\] is the largest value, s\\[..., 1\\] is the second largest, etc. \n\n#### public [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e\n**u**\n()\n\nLeft singular vectors. \n\n#### public [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e\n**v**\n()\n\nRight singular vectors."]]