SparseSoftmaxCrossEntropyWithLogits
จัดทุกอย่างให้เป็นระเบียบอยู่เสมอด้วยคอลเล็กชัน
บันทึกและจัดหมวดหมู่เนื้อหาตามค่ากำหนดของคุณ
คำนวณต้นทุนเอนโทรปีข้าม softmax และการไล่ระดับสีเพื่อเผยแพร่กลับ
ต่างจาก `SoftmaxCrossEntropyWithLogits` ตรงที่การดำเนินการนี้ไม่ยอมรับเมทริกซ์ความน่าจะเป็นของป้ายกำกับ แต่จะยอมรับป้ายกำกับเดียวต่อแถวของคุณลักษณะ ป้ายกำกับนี้ถือว่ามีความน่าจะเป็น 1.0 สำหรับแถวที่กำหนด
อินพุตคือบันทึก ไม่ใช่ความน่าจะเป็น
ค่าคงที่
สตริง | OP_NAME | ชื่อของ op นี้ ซึ่งรู้จักกันในชื่อของเอ็นจิ้นหลัก TensorFlow |
วิธีการสืบทอด
จากคลาส java.lang.Object บูลีน | เท่ากับ (วัตถุ arg0) |
คลาสสุดท้าย<?> | รับคลาส () |
ภายใน | แฮชโค้ด () |
โมฆะสุดท้าย | แจ้ง () |
โมฆะสุดท้าย | แจ้งทั้งหมด () |
สตริง | toString () |
โมฆะสุดท้าย | รอสักครู่ (ยาว arg0, int arg1) |
โมฆะสุดท้าย | รอ (ยาว arg0) |
โมฆะสุดท้าย | รอ () |
ค่าคงที่
สตริงสุดท้ายแบบคงที่สาธารณะ OP_NAME
ชื่อของ op นี้ ซึ่งรู้จักกันในชื่อของเอ็นจิ้นหลัก TensorFlow
ค่าคงที่: "SparseSoftmaxCrossEntropyWithLogits"
วิธีการสาธารณะ
เอาท์ พุท สาธารณะ <T> backprop ()
การไล่ระดับสีแบบย้อนกลับ (batch_size x num_classes matrix)
วิธีการจากโรงงานเพื่อสร้างคลาสที่รวมการดำเนินการ SparseSoftmaxCrossEntropyWithLogits ใหม่
พารามิเตอร์
ขอบเขต | ขอบเขตปัจจุบัน |
---|
คุณสมบัติ | เมทริกซ์ชุดขนาด x num_classes |
---|
ฉลาก | เวกเตอร์ขนาดแบตช์ที่มีค่าเป็น [0, num_classes) นี่คือป้ายกำกับสำหรับรายการมินิแบทช์ที่กำหนด |
---|
การส่งคืน
- อินสแตนซ์ใหม่ของ SparseSoftmaxCrossEntropyWithLogits
สาธารณะ เอาท์พุท <T> การสูญเสีย ()
ตามตัวอย่างการสูญเสีย (เวกเตอร์ขนาดชุด)
เนื้อหาของหน้าเว็บนี้ได้รับอนุญาตภายใต้ใบอนุญาตที่ต้องระบุที่มาของครีเอทีฟคอมมอนส์ 4.0 และตัวอย่างโค้ดได้รับอนุญาตภายใต้ใบอนุญาต Apache 2.0 เว้นแต่จะระบุไว้เป็นอย่างอื่น โปรดดูรายละเอียดที่นโยบายเว็บไซต์ Google Developers Java เป็นเครื่องหมายการค้าจดทะเบียนของ Oracle และ/หรือบริษัทในเครือ
อัปเดตล่าสุด 2025-07-26 UTC
[null,null,["อัปเดตล่าสุด 2025-07-26 UTC"],[],[],null,["# SparseSoftmaxCrossEntropyWithLogits\n\npublic final class **SparseSoftmaxCrossEntropyWithLogits** \nComputes softmax cross entropy cost and gradients to backpropagate.\n\n\nUnlike \\`SoftmaxCrossEntropyWithLogits\\`, this operation does not accept\na matrix of label probabilities, but rather a single label per row\nof features. This label is considered to have probability 1.0 for the\ngiven row.\n\n\nInputs are the logits, not probabilities.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n### Constants\n\n|--------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------|\n| String | [OP_NAME](/jvm/api_docs/java/org/tensorflow/op/nn/raw/SparseSoftmaxCrossEntropyWithLogits#OP_NAME) | The name of this op, as known by TensorFlow core engine |\n\n### Public Methods\n\n|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e | [backprop](/jvm/api_docs/java/org/tensorflow/op/nn/raw/SparseSoftmaxCrossEntropyWithLogits#backprop())() backpropagated gradients (batch_size x num_classes matrix). |\n| static \\\u003cT extends [TNumber](/jvm/api_docs/java/org/tensorflow/types/family/TNumber)\\\u003e [SparseSoftmaxCrossEntropyWithLogits](/jvm/api_docs/java/org/tensorflow/op/nn/raw/SparseSoftmaxCrossEntropyWithLogits)\\\u003cT\\\u003e | [create](/jvm/api_docs/java/org/tensorflow/op/nn/raw/SparseSoftmaxCrossEntropyWithLogits#create(org.tensorflow.op.Scope, org.tensorflow.Operand\u003cT\u003e, org.tensorflow.Operand\u003c? extends org.tensorflow.types.family.TNumber\u003e))([Scope](/jvm/api_docs/java/org/tensorflow/op/Scope) scope, [Operand](/jvm/api_docs/java/org/tensorflow/Operand)\\\u003cT\\\u003e features, [Operand](/jvm/api_docs/java/org/tensorflow/Operand)\\\u003c? extends [TNumber](/jvm/api_docs/java/org/tensorflow/types/family/TNumber)\\\u003e labels) Factory method to create a class wrapping a new SparseSoftmaxCrossEntropyWithLogits operation. |\n| [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e | [loss](/jvm/api_docs/java/org/tensorflow/op/nn/raw/SparseSoftmaxCrossEntropyWithLogits#loss())() Per example loss (batch_size vector). |\n\n### Inherited Methods\n\nFrom class [org.tensorflow.op.RawOp](/jvm/api_docs/java/org/tensorflow/op/RawOp) \n\n|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| final boolean | [equals](/jvm/api_docs/java/org/tensorflow/op/RawOp#equals(java.lang.Object))(Object obj) |\n| final int | [hashCode](/jvm/api_docs/java/org/tensorflow/op/RawOp#hashCode())() |\n| [Operation](/jvm/api_docs/java/org/tensorflow/Operation) | [op](/jvm/api_docs/java/org/tensorflow/op/RawOp#op())() Return this unit of computation as a single [Operation](/jvm/api_docs/java/org/tensorflow/Operation). |\n| final String | [toString](/jvm/api_docs/java/org/tensorflow/op/RawOp#toString())() |\n\nFrom class java.lang.Object \n\n|------------------|---------------------------|\n| boolean | equals(Object arg0) |\n| final Class\\\u003c?\\\u003e | getClass() |\n| int | hashCode() |\n| final void | notify() |\n| final void | notifyAll() |\n| String | toString() |\n| final void | wait(long arg0, int arg1) |\n| final void | wait(long arg0) |\n| final void | wait() |\n\nFrom interface [org.tensorflow.op.Op](/jvm/api_docs/java/org/tensorflow/op/Op) \n\n|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| abstract [ExecutionEnvironment](/jvm/api_docs/java/org/tensorflow/ExecutionEnvironment) | [env](/jvm/api_docs/java/org/tensorflow/op/Op#env())() Return the execution environment this op was created in. |\n| abstract [Operation](/jvm/api_docs/java/org/tensorflow/Operation) | [op](/jvm/api_docs/java/org/tensorflow/op/Op#op())() Return this unit of computation as a single [Operation](/jvm/api_docs/java/org/tensorflow/Operation). |\n\nConstants\n---------\n\n#### public static final String\n**OP_NAME**\n\nThe name of this op, as known by TensorFlow core engine \nConstant Value: \"SparseSoftmaxCrossEntropyWithLogits\"\n\nPublic Methods\n--------------\n\n#### public [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e\n**backprop**\n()\n\nbackpropagated gradients (batch_size x num_classes matrix). \n\n#### public static [SparseSoftmaxCrossEntropyWithLogits](/jvm/api_docs/java/org/tensorflow/op/nn/raw/SparseSoftmaxCrossEntropyWithLogits)\\\u003cT\\\u003e\n**create**\n([Scope](/jvm/api_docs/java/org/tensorflow/op/Scope) scope, [Operand](/jvm/api_docs/java/org/tensorflow/Operand)\\\u003cT\\\u003e features, [Operand](/jvm/api_docs/java/org/tensorflow/Operand)\\\u003c? extends [TNumber](/jvm/api_docs/java/org/tensorflow/types/family/TNumber)\\\u003e labels)\n\nFactory method to create a class wrapping a new SparseSoftmaxCrossEntropyWithLogits operation. \n\n##### Parameters\n\n| scope | current scope |\n| features | batch_size x num_classes matrix |\n| labels | batch_size vector with values in \\[0, num_classes). This is the label for the given minibatch entry. |\n|----------|------------------------------------------------------------------------------------------------------|\n\n##### Returns\n\n- a new instance of SparseSoftmaxCrossEntropyWithLogits \n\n#### public [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e\n**loss**\n()\n\nPer example loss (batch_size vector)."]]