Help protect the Great Barrier Reef with TensorFlow on Kaggle

# tf.TensorArray

Class wrapping dynamic-sized, per-time-step, write-once Tensor arrays.

### Used in the notebooks

This class is meant to be used with dynamic iteration primitives such as while_loop and map_fn. It supports gradient back-propagation via special "flow" control flow dependencies.

Example 1: Plain reading and writing.

ta = tf.TensorArray(tf.float32, size=0, dynamic_size=True, clear_after_read=False)
ta = ta.write(0, 10)
ta = ta.write(1, 20)
ta = ta.write(2, 30)

<tf.Tensor: shape=(), dtype=float32, numpy=10.0>
<tf.Tensor: shape=(), dtype=float32, numpy=20.0>
<tf.Tensor: shape=(), dtype=float32, numpy=30.0>
ta.stack()
<tf.Tensor: shape=(3,), dtype=float32, numpy=array([10., 20., 30.],
dtype=float32)>

Example 2: Fibonacci sequence algorithm that writes in a loop then returns.

@tf.function
def fibonacci(n):
ta = tf.TensorArray(tf.float32, size=0, dynamic_size=True)
ta = ta.unstack([0., 1.])

for i in range(2, n):

return ta.stack()

fibonacci(7)
<tf.Tensor: shape=(7,), dtype=float32,
numpy=array([0., 1., 1., 2., 3., 5., 8.], dtype=float32)>

Example 3: A simple loop interacting with a tf.Variable.

v = tf.Variable(1)
@tf.function
def f(x):
ta = tf.TensorArray(tf.int32, size=0, dynamic_size=True)
for i in tf.range(x):
ta = ta.write(i, v)
return ta.stack()
f(5)
<tf.Tensor: shape=(5,), dtype=int32, numpy=array([ 1,  2,  4,  7, 11],
dtype=int32)>

dtype (required) data type of the TensorArray.
size (optional) int32 scalar Tensor: the size of the TensorArray. Required if handle is not provided.
dynamic_size (optional) Python bool: If true, writes to the TensorArray can grow the TensorArray past its initial size. Default: False.
clear_after_read Boolean (optional, default: True). If True, clear TensorArray values after reading them. This disables read-many semantics, but allows early release of memory.
tensor_array_name (optional) Python string: the name of the TensorArray. This is used when creating the TensorArray handle. If this value is set, handle should be None.
handle (optional) A Tensor handle to an existing TensorArray. If this is set, tensor_array_name should be None. Only supported in graph mode.
flow (optional) A float Tensor scalar coming from an existing TensorArray.flow. Only supported in graph mode.
infer_shape (optional, default: True) If True, shape inference is enabled. In this case, all elements must have the same shape.
element_shape (optional, default: None) A TensorShape object specifying the shape constraints of each of the elements of the TensorArray. Need not be fully defined.
colocate_with_first_write_call If True, the TensorArray will be colocated on the same device as the Tensor used on its first write (write operations include write, unstack, and split). If False, the TensorArray will be placed on the device determine