tf.compat.v1.metrics.recall_at_thresholds
Stay organized with collections
Save and categorize content based on your preferences.
Computes various recall values for different thresholds
on predictions
.
tf.compat.v1.metrics.recall_at_thresholds(
labels,
predictions,
thresholds,
weights=None,
metrics_collections=None,
updates_collections=None,
name=None
)
The recall_at_thresholds
function creates four local variables,
true_positives
, true_negatives
, false_positives
and false_negatives
for various values of thresholds. recall[i]
is defined as the total weight
of values in predictions
above thresholds[i]
whose corresponding entry in
labels
is True
, divided by the total weight of True
values in labels
(true_positives[i] / (true_positives[i] + false_negatives[i])
).
For estimation of the metric over a stream of data, the function creates an
update_op
operation that updates these variables and returns the recall
.
If weights
is None
, weights default to 1. Use weights of 0 to mask values.
Args |
labels
|
The ground truth values, a Tensor whose dimensions must match
predictions . Will be cast to bool .
|
predictions
|
A floating point Tensor of arbitrary shape and whose values
are in the range [0, 1] .
|
thresholds
|
A python list or tuple of float thresholds in [0, 1] .
|
weights
|
Optional Tensor whose rank is either 0, or the same rank as
labels , and must be broadcastable to labels (i.e., all dimensions must
be either 1 , or the same as the corresponding labels dimension).
|
metrics_collections
|
An optional list of collections that recall should be
added to.
|
updates_collections
|
An optional list of collections that update_op should
be added to.
|
name
|
An optional variable_scope name.
|
Returns |
recall
|
A float Tensor of shape [len(thresholds)] .
|
update_op
|
An operation that increments the true_positives ,
true_negatives , false_positives and false_negatives variables that
are used in the computation of recall .
|
Raises |
ValueError
|
If predictions and labels have mismatched shapes, or if
weights is not None and its shape doesn't match predictions , or if
either metrics_collections or updates_collections are not a list or
tuple.
|
RuntimeError
|
If eager execution is enabled.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[null,null,["Last updated 2024-04-26 UTC."],[],[],null,["# tf.compat.v1.metrics.recall_at_thresholds\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.16.1/tensorflow/python/ops/metrics_impl.py#L2840-L2915) |\n\nComputes various recall values for different `thresholds` on `predictions`. \n\n tf.compat.v1.metrics.recall_at_thresholds(\n labels,\n predictions,\n thresholds,\n weights=None,\n metrics_collections=None,\n updates_collections=None,\n name=None\n )\n\nThe `recall_at_thresholds` function creates four local variables,\n`true_positives`, `true_negatives`, `false_positives` and `false_negatives`\nfor various values of thresholds. `recall[i]` is defined as the total weight\nof values in `predictions` above `thresholds[i]` whose corresponding entry in\n`labels` is `True`, divided by the total weight of `True` values in `labels`\n(`true_positives[i] / (true_positives[i] + false_negatives[i])`).\n\nFor estimation of the metric over a stream of data, the function creates an\n`update_op` operation that updates these variables and returns the `recall`.\n\nIf `weights` is `None`, weights default to 1. Use weights of 0 to mask values.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `labels` | The ground truth values, a `Tensor` whose dimensions must match `predictions`. Will be cast to `bool`. |\n| `predictions` | A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. |\n| `thresholds` | A python list or tuple of float thresholds in `[0, 1]`. |\n| `weights` | Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). |\n| `metrics_collections` | An optional list of collections that `recall` should be added to. |\n| `updates_collections` | An optional list of collections that `update_op` should be added to. |\n| `name` | An optional variable_scope name. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `recall` | A float `Tensor` of shape `[len(thresholds)]`. |\n| `update_op` | An operation that increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` variables that are used in the computation of `recall`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `ValueError` | If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. |\n| `RuntimeError` | If eager execution is enabled. |\n\n\u003cbr /\u003e"]]