|  View source on GitHub | 
Optimizer that implements the FTRL algorithm.
Inherits From: Optimizer
tf.compat.v1.train.FtrlOptimizer(
    learning_rate,
    learning_rate_power=-0.5,
    initial_accumulator_value=0.1,
    l1_regularization_strength=0.0,
    l2_regularization_strength=0.0,
    use_locking=False,
    name='Ftrl',
    accum_name=None,
    linear_name=None,
    l2_shrinkage_regularization_strength=0.0,
    beta=None
)
This version has support for both online L2 (McMahan et al., 2013) and shrinkage-type L2, which is the addition of an L2 penalty to the loss function.
| References | |
|---|---|
| Ad-click prediction: McMahan et al., 2013 (pdf) | 
| Raises | |
|---|---|
| ValueError | If one of the arguments is invalid. | 
Methods
apply_gradients
apply_gradients(
    grads_and_vars,
    global_step=None,
    name=None,
    skip_gradients_aggregation=False
)
Apply gradients to variables.
This is the second part of minimize(). It returns an Operation that
applies gradients.
@compatibility(TF2)
How to Map Arguments
| TF1 Arg Name | TF2 Arg Name | Note | 
|---|---|---|
| grads_and_vars | grads_and_vars | - | 
| global_step | Not supported. | Use optimizer.iterations | 
| name | name. | - | 
| Args | |
|---|---|
| grads_and_vars | List of (gradient, variable) pairs as returned by compute_gradients(). | 
| global_step | Optional Variableto increment by one after the variables
have been updated. | 
| name | Optional name for the returned operation.  Default to the name
passed to the Optimizerconstructor. | 
| skip_gradients_aggregation | If true, gradients aggregation will not be performed inside optimizer. Usually this arg is set to True when you write custom code aggregating gradients outside the optimizer. | 
| Returns | |
|---|---|
| An Operationthat applies the specified gradients. Ifglobal_stepwas not None, that operation also incrementsglobal_step. | 
| Raises | |
|---|---|
| TypeError | If grads_and_varsis malformed. | 
| ValueError | If none of the variables have gradients. | 
| RuntimeError | If you should use _distributed_apply()instead. | 
compute_gradients
compute_gradients(
    loss,
    var_list=None,
    gate_gradients=GATE_OP,
    aggregation_method=None,
    colocate_gradients_with_ops=False,
    grad_loss=None
)
Compute gradients of loss for the variables in var_list.
Migrate to TF2
tf.keras.optimizers.Optimizer in TF2 does not provide a
compute_gradients method, and you should use a tf.GradientTape to
obtain the gradients:
@tf.function
def train step(inputs):
  batch_data, labels = inputs
  with tf.GradientTape() as tape:
    predictions = model(batch_data, training=True)
    loss = tf.keras.losses.CategoricalCrossentropy(
        reduction=tf.keras.losses.Reduction.NONE)(labels, predictions)
  gradients = tape.gradient(loss, model.trainable_variables)
  optimizer.apply_gradients(zip(gradients, model.trainable_variables))
Args:
  loss: A Tensor containing the value to minimize or a callable taking
    no arguments which returns the value to minimize. When eager execution
    is enabled it must be a callable.
  var_list: Optional list or tuple of tf.Variable to update to minimize
    loss.  Defaults to the list of variables collected in the graph
    under the key GraphKeys.TRAINABLE_VARIABLES.
  gate_gradients: How to gate the computation of gradients.  Can be
    GATE_NONE, GATE_OP, or GATE_GRAPH.
  aggregation_method: Specifies the method used to combine gradient terms.
    Valid values are defined in the class AggregationMethod.
  colocate_gradients_with_ops: If True, try colocating gradients with
    the corresponding op.
  grad_loss: Optional. A Tensor holding the gradient computed for loss.
Returns:
  A list of (gradient, variable) pairs. Variable is always present, but
  gradient can be None.
Raises:
  TypeError: If var_list contains anything else than Variable objects.
  ValueError: If some arguments are invalid.
  RuntimeError: If called with eager execution enabled and loss is
    not callable.
@compatibility(eager)
When eager execution is enabled, gate_gradients, aggregation_method,
and colocate_gradients_with_ops are ignored.
Description
This is the first part of minimize().  It returns a list
of (gradient, variable) pairs where "gradient" is the gradient
for "variable".  Note that "gradient" can be a Tensor, an
IndexedSlices, or None if there is no gradient for the
given variable.
get_name
get_name()
get_slot
get_slot(
    var, name
)
Return a slot named name created for var by the Optimizer.
Some Optimizer subclasses use additional variables.  For example
Momentum and Adagrad use variables to accumulate updates.  This method
gives access to these Variable objects if for some reason you need them.
Use get_slot_names() to get the list of slot names created by the
Optimizer.
| Args | |
|---|---|
| var | A variable passed to minimize()orapply_gradients(). | 
| name | A string. | 
| Returns | |
|---|---|
| The Variablefor the slot if it was created,Noneotherwise. | 
get_slot_names
get_slot_names()
Return a list of the names of slots created by the Optimizer.
See get_slot().
| Returns | |
|---|---|
| A list of strings. | 
minimize
minimize(
    loss,
    global_step=None,
    var_list=None,
    gate_gradients=GATE_OP,
    aggregation_method=None,
    colocate_gradients_with_ops=False,
    name=None,
    grad_loss=None
)
Add operations to minimize loss by updating var_list.
This method simply combines calls compute_gradients() and
apply_gradients(). If you want to process the gradient before applying
them call compute_gradients() and apply_gradients() explicitly instead
of using this function.
| Args | |
|---|---|
| loss | A Tensorcontaining the value to minimize. | 
| global_step | Optional Variableto increment by one after the
variables have been updated. | 
| var_list | Optional list or tuple of Variableobjects to update to
minimizeloss.  Defaults to the list of variables collected in
the graph under the keyGraphKeys.TRAINABLE_VARIABLES. | 
| gate_gradients | How to gate the computation of gradients.  Can be GATE_NONE,GATE_OP, orGATE_GRAPH. | 
| aggregation_method | Specifies the method used to combine gradient terms.
Valid values are defined in the class AggregationMethod. | 
| colocate_gradients_with_ops | If True, try colocating gradients with the corresponding op. | 
| name | Optional name for the returned operation. | 
| grad_loss | Optional. A Tensorholding the gradient computed forloss. | 
| Returns | |
|---|---|
| An Operation that updates the variables in var_list.  Ifglobal_stepwas notNone, that operation also incrementsglobal_step. | 
| Raises | |
|---|---|
| ValueError | If some of the variables are not Variableobjects. | 
eager compatibility
When eager execution is enabled, loss should be a Python function that
takes no arguments and computes the value to be minimized. Minimization (and
gradient computation) is done with respect to the elements of var_list if
not None, else with respect to any trainable variables created during the
execution of the loss function. gate_gradients, aggregation_method,
colocate_gradients_with_ops and grad_loss are ignored when eager
execution is enabled.
variables
variables()
A list of variables which encode the current state of Optimizer.
Includes slot variables and additional global variables created by the optimizer in the current default graph.
| Returns | |
|---|---|
| A list of variables. | 
| Class Variables | |
|---|---|
| GATE_GRAPH | 2 | 
| GATE_NONE | 0 | 
| GATE_OP | 1 |