Creates a Dataset that counts from start in steps of size step. (deprecated)
tf.data.experimental.Counter(
    start=0,
    step=1,
    dtype=tf.dtypes.int64
)
Used in the notebooks
  
    
      | Used in the guide | Used in the tutorials | 
  
  
    
      |  |  | 
  
Unlike tf.data.Dataset.range which will stop at some ending number,
Counter will produce elements indefinitely.
dataset = tf.data.experimental.Counter().take(5)
list(dataset.as_numpy_iterator())
[0, 1, 2, 3, 4]
dataset.element_spec
TensorSpec(shape=(), dtype=tf.int64, name=None)
dataset = tf.data.experimental.Counter(dtype=tf.int32)
dataset.element_spec
TensorSpec(shape=(), dtype=tf.int32, name=None)
dataset = tf.data.experimental.Counter(start=2).take(5)
list(dataset.as_numpy_iterator())
[2, 3, 4, 5, 6]
dataset = tf.data.experimental.Counter(start=2, step=5).take(5)
list(dataset.as_numpy_iterator())
[2, 7, 12, 17, 22]
dataset = tf.data.experimental.Counter(start=10, step=-1).take(5)
list(dataset.as_numpy_iterator())
[10, 9, 8, 7, 6]
| Args | 
|---|
| start | (Optional.) The starting value for the counter. Defaults to 0. | 
| step | (Optional.) The step size for the counter. Defaults to 1. | 
| dtype | (Optional.) The data type for counter elements. Defaults to tf.int64. | 
| Returns | 
|---|
| A Datasetof scalardtypeelements. |