For DNN model, indicator_column can be used to wrap any
categorical_column_* (e.g., to feed to DNN). Consider to Use
embedding_column if the number of buckets/unique(values) are large.
For Wide (aka linear) model, indicator_column is the internal
representation for categorical column when passing categorical column
directly (as any element in feature_columns) to linear_model. See
linear_model for details.
name=indicator_column(categorical_column_with_vocabulary_list('name',['bob','george','wanda']))columns=[name,...]features=tf.io.parse_example(...,features=make_parse_example_spec(columns))dense_tensor=input_layer(features,columns)dense_tensor==[[1,0,0]]# If "name" bytes_list is ["bob"]dense_tensor==[[1,0,1]]# If "name" bytes_list is ["bob", "wanda"]dense_tensor==[[2,0,0]]# If "name" bytes_list is ["bob", "bob"]
Args
categorical_column
A CategoricalColumn which is created by
categorical_column_with_* or crossed_column functions.
Returns
An IndicatorColumn.
Raises
ValueError
If categorical_column is not CategoricalColumn type.