tf.keras.applications.resnet_v2.ResNet50V2

Instantiates the ResNet50V2 architecture.

Reference:

For image classification use cases, see this page for detailed examples.

For transfer learning use cases, make sure to read the guide to transfer learning & fine-tuning.

include_top whether to include the fully-connected layer at the top of the network.
weights one of None (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded.
input_tensor optional Keras tensor (i.e. output of layers.Input()) to use as image input for the model.
input_shape optional shape tuple, only to be specified if include_top is False (otherwise the input shape has to be (224, 224, 3) (with 'channels_last' data format) or (3, 224, 224) (with 'channels_first' data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. (200, 200, 3) would be one valid value.
pooling O