Dense implements the operation:
output = activation(dot(input, kernel) + bias)
where activation is the element-wise activation function
passed as the activation argument, kernel is a weights matrix
created by the layer, and bias is a bias vector created by the layer
(only applicable if use_bias is True).
Args
units
Positive integer, dimensionality of the output space.
activation
Activation function to use.
If you don't specify anything, no activation is applied
(ie. "linear" activation: a(x) = x).
use_bias
Boolean, whether the layer uses a bias vector.
kernel_initializer
Initializer for the kernel weights matrix.
bias_initializer
Initializer for the bias vector.
kernel_regularizer
Regularizer function applied to
the kernel weights matrix.
bias_regularizer
Regularizer function applied to the bias vector.
activity_regularizer
Regularizer function applied to
the output of the layer (its "activation").
kernel_constraint
Constraint function applied to
the kernel weights matrix.
bias_constraint
Constraint function applied to the bias vector.
lora_rank
Optional integer. If set, the layer's forward pass
will implement LoRA (Low-Rank Adaptation)
with the provided rank. LoRA sets the layer's kernel
to non-trainable and replaces it with a delta over the
original kernel, obtained via multiplying two lower-rank
trainable matrices. This can be useful to reduce the
computation cost of fine-tuning large dense layers.
You can also enable LoRA on an existing
Dense layer by calling layer.enable_lora(rank).
Input shape
N-D tensor with shape: (batch_size, ..., input_dim).
The most common situation would be
a 2D input with shape (batch_size, input_dim).
Output shape
N-D tensor with shape: (batch_size, ..., units).
For instance, for a 2D input with shape (batch_size, input_dim),
the output would have shape (batch_size, units).
Attributes
input
Retrieves the input tensor(s) of a symbolic operation.
Only returns the tensor(s) corresponding to the first time
the operation was called.
kernel
output
Retrieves the output tensor(s) of a layer.
Only returns the tensor(s) corresponding to the first time
the operation was called.
This method is the reverse of get_config,
capable of instantiating the same layer from the config
dictionary. It does not handle layer connectivity
(handled by Network), nor weights (handled by set_weights).
Args
config
A Python dictionary, typically the
output of get_config.