Turns positive integers (indexes) into dense vectors of fixed size.
Inherits From: Layer, Operation
tf.keras.layers.Embedding(
input_dim,
output_dim,
embeddings_initializer='uniform',
embeddings_regularizer=None,
embeddings_constraint=None,
mask_zero=False,
weights=None,
lora_rank=None,
**kwargs
)
Used in the notebooks
| Used in the guide |
Used in the tutorials |
|
|
|
e.g. [[4], [20]] -> [[0.25, 0.1], [0.6, -0.2]]
This layer can only be used on positive integer inputs of a fixed range.
Example:
model = keras.Sequential()
model.add(keras.layers.Embedding(1000, 64))
# The model will take as input an integer matrix of size (batch,
# input_length), and the largest integer (i.e. word index) in the input
# should be no larger than 999 (vocabulary size).
# Now model.output_shape is (None, 10, 64), where `None` is the batch
# dimension.
input_array = np.random.randint(1000, size=(32, 10))
model.compile('rmsprop', 'mse')
output_array = model.predict(input_array)
print(output_array.shape)
(32, 10, 64)
Args |
input_dim
|
Integer. Size of the vocabulary,
i.e. maximum integer index + 1.
|
output_dim
|
Integer. Dimension of the dense embedding.
|
embeddings_initializer
|
Initializer for the embeddings
matrix (see keras.initializers).
|
embeddings_regularizer
|
Regularizer function applied to
the embeddings matrix (see keras.regularizers).
|
embeddings_constraint
|
Constraint function applied to
the embeddings matrix (see keras.constraints).
|
mask_zero
|
Boolean, whether or not the input value 0 is a special
"padding" value that should be masked out.
This is useful when using recurrent layers which
may take variable length input. If this is True,
then all subsequent layers in the model need
to support masking or an exception will be raised.
If mask_zero is set to True, as a consequence,
index 0 cannot be used in the vocabulary (input_dim should
equal size of vocabulary + 1).
|
weights
|
Optional floating-point matrix of size
(input_dim, output_dim). The initial embeddings values
to use.
|
lora_rank
|
Optional integer. If set, the layer's forward pass
will implement LoRA (Low-Rank Adaptation)
with the provided rank. LoRA sets the layer's embeddings
matrix to non-trainable and replaces it with a delta over the
original matrix, obtained via multiplying two lower-rank
trainable matrices. This can be useful to reduce the
computation cost of fine-tuning large embedding layers.
You can also enable LoRA on an existing
Embedding layer by calling layer.enable_lora(rank).
|
|
2D tensor with shape: (batch_size, input_length).
|
Output shape |
3D tensor with shape: (batch_size, input_length, output_dim).
|
Attributes |
embeddings
|
|
input
|
Retrieves the input tensor(s) of a symbolic operation.
Only returns the tensor(s) corresponding to the first time
the operation was called.
|
output
|
Retrieves the output tensor(s) of a layer.
Only returns the tensor(s) corresponding to the first time
the operation was called.
|
Methods
enable_lora
View source
enable_lora(
rank, a_initializer='he_uniform', b_initializer='zeros'
)
from_config
View source
@classmethod
from_config(
config
)
Creates a layer from its config.
This method is the reverse of get_config,
capable of instantiating the same layer from the config
dictionary. It does not handle layer connectivity
(handled by Network), nor weights (handled by set_weights).
| Args |
config
|
A Python dictionary, typically the
output of get_config.
|
| Returns |
|
A layer instance.
|
quantized_build
View source
quantized_build(
input_shape, mode
)
symbolic_call
View source
symbolic_call(
*args, **kwargs
)
Class Variables |
|
QUANTIZATION_MODE_ERROR_TEMPLATE
|
"Invalid quantization mode. Expected 'int8'. Received: quantization_mode={mode}"
|