View source on GitHub |
Keras Layer that wraps a Flax module.
Inherits From: JaxLayer
, Layer
, Operation
tf.keras.layers.FlaxLayer(
module, method=None, variables=None, **kwargs
)
This layer enables the use of Flax components in the form of
flax.linen.Module
instances within Keras when using JAX as the backend for Keras.
The module method to use for the forward pass can be specified via the
method
argument and is __call__
by default. This method must take the
following arguments with these exact names:
self
if the method is bound to the module, which is the case for the default of__call__
, andmodule
otherwise to pass the module.inputs
: the inputs to the model, a JAX array or aPyTree
of arrays.training
(optional): an argument specifying if we're in training mode or inference mode,True
is passed in training mode.
FlaxLayer
handles the non-trainable state of your model and required RNGs
automatically. Note that the mutable
parameter of
flax.linen.Module.apply()
is set to DenyList(["params"])
, therefore making the assumption that all
the variables outside of the "params" collection are non-trainable weights.
This example shows how to create a FlaxLayer
from a Flax Module
with
the default __call__
method and no training argument:
class MyFlaxModule(flax.linen.Module):
@flax.linen.compact
def __call__(self, inputs):
x = inputs
x = flax.linen.Conv(features=32, kernel_size=(3, 3))(x)
x = flax.linen.relu(x)
x = flax.linen.avg_pool(x, window_shape=(2, 2), strides=(2, 2))
x = x.reshape((x.shape[0], -1)) # flatten
x = flax.linen.Dense(features=200)(x)
x = flax.linen.relu(x)
x = flax.linen.Dense(features=10)(x)
x = flax.linen.softmax(x)
return x
flax_module = MyFlaxModule()
keras_layer = FlaxLayer(flax_module)
This example shows how to wrap the module method to conform to the required signature. This allows having multiple input arguments and a training argument that has a different name and values. This additionally shows how to use a function that is not bound to the module.
class MyFlaxModule(flax.linen.Module):
@flax.linen.compact
def forward(self, input1, input2, deterministic):
...
return outputs
def my_flax_module_wrapper(module, inputs, training):
input1, input2 = inputs
return module.forward(input1, input2, not training)
flax_module = MyFlaxModule()
keras_layer = FlaxLayer(
module=flax_module,
method=my_flax_module_wrapper,
)
Args | |
---|---|
module
|
An instance of flax.linen.Module or subclass.
|
method
|
The method to call the model. This is generally a method in the
Module . If not provided, the __call__ method is used. method
can also be a function not defined in the Module , in which case it
must take the Module as the first argument. It is used for both
Module.init and Module.apply . Details are documented in the
method argument of flax.linen.Module.apply() .
|
variables
|
A dict containing all the variables of the module in the
same format as what is returned by flax.linen.Module.init() .
It should contain a "params" key and, if applicable, other keys for
collections of variables for non-trainable state. This allows
passing trained parameters and learned non-trainable state or
controlling the initialization. If None is passed, the module's
init function is called at build time to initialize the variables
of the model.
|
Methods
from_config
@classmethod
from_config( config )
Creates a layer from its config.
This method is the reverse of get_config
,
capable of instantiating the same layer from the config
dictionary. It does not handle layer connectivity
(handled by Network), nor weights (handled by set_weights
).
Args | |
---|---|
config
|
A Python dictionary, typically the output of get_config. |
Returns | |
---|---|
A layer instance. |
symbolic_call
symbolic_call(
*args, **kwargs
)