Gated Recurrent Unit - Cho et al. 2014.
Inherits From: RNN, Layer, Operation
tf.keras.layers.GRU(
    units,
    activation='tanh',
    recurrent_activation='sigmoid',
    use_bias=True,
    kernel_initializer='glorot_uniform',
    recurrent_initializer='orthogonal',
    bias_initializer='zeros',
    kernel_regularizer=None,
    recurrent_regularizer=None,
    bias_regularizer=None,
    activity_regularizer=None,
    kernel_constraint=None,
    recurrent_constraint=None,
    bias_constraint=None,
    dropout=0.0,
    recurrent_dropout=0.0,
    seed=None,
    return_sequences=False,
    return_state=False,
    go_backwards=False,
    stateful=False,
    unroll=False,
    reset_after=True,
    use_cudnn='auto',
    **kwargs
)
Used in the notebooks
  
    
      | Used in the guide | Used in the tutorials | 
  
  
    
      |  |  | 
  
Based on available runtime hardware and constraints, this layer
will choose different implementations (cuDNN-based or backend-native)
to maximize the performance. If a GPU is available and all
the arguments to the layer meet the requirement of the cuDNN kernel
(see below for details), the layer will use a fast cuDNN implementation
when using the TensorFlow backend.
The requirements to use the cuDNN implementation are:
- activation==- tanh
- recurrent_activation==- sigmoid
- dropout== 0 and- recurrent_dropout== 0
- unrollis- False
- use_biasis- True
- reset_afteris- True
- Inputs, if use masking, are strictly right-padded.
- Eager execution is enabled in the outermost context.
There are two variants of the GRU implementation. The default one is based
on v3 and has reset gate applied to
hidden state before matrix multiplication. The other one is based on
original and has the order reversed.
The second variant is compatible with CuDNNGRU (GPU-only) and allows
inference on CPU. Thus it has separate biases for kernel and
recurrent_kernel. To use this variant, set reset_after=True and
recurrent_activation='sigmoid'.
For example:
inputs = np.random.random((32, 10, 8))
gru = keras.layers.GRU(4)
output = gru(inputs)
output.shape
(32, 4)
gru = keras.layers.GRU(4, return_sequences=True, return_state=True)
whole_sequence_output, final_state = gru(inputs)
whole_sequence_output.shape
(32, 10, 4)
final_state.shape
(32, 4)
| Args | 
|---|
| units | Positive integer, dimensionality of the output space. | 
| activation | Activation function to use.
Default: hyperbolic tangent ( tanh).
If you passNone, no activation is applied
(ie. "linear" activation:a(x) = x). | 
| recurrent_activation | Activation function to use
for the recurrent step.
Default: sigmoid ( sigmoid).
If you passNone, no activation is applied
(ie. "linear" activation:a(x) = x). | 
| use_bias | Boolean, (default True), whether the layer
should use a bias vector. | 
| kernel_initializer | Initializer for the kernelweights matrix,
used for the linear transformation of the inputs. Default:"glorot_uniform". | 
| recurrent_initializer | Initializer for the recurrent_kernelweights matrix, used for the linear transformation of the recurrent
state. Default:"orthogonal". | 
| bias_initializer | Initializer for the bias vector. Default: "zeros". | 
| kernel_regularizer | Regularizer function applied to the kernelweights
matrix. Default:None. | 
| recurrent_regularizer | Regularizer function applied to the recurrent_kernelweights matrix. Default:None. | 
| bias_regularizer | Regularizer function applied to the bias vector.
Default: None. | 
| activity_regularizer | Regularizer function applied to the output of the
layer (its "activation"). Default: None. | 
| kernel_constraint | Constraint function applied to the kernelweights
matrix. Default:None. | 
| recurrent_constraint | Constraint function applied to the recurrent_kernelweights matrix. Default:None. | 
| bias_constraint | Constraint function applied to the bias vector.
Default: None. | 
| dropout | Float between 0 and 1. Fraction of the units to drop for the
linear transformation of the inputs. Default: 0. | 
| recurrent_dropout | Float between 0 and 1. Fraction of the units to drop
for the linear transformation of the recurrent state. Default: 0. | 
| seed | Random seed for dropout. | 
| return_sequences | Boolean. Whether to return the last output
in the output sequence, or the full sequence. Default: False. | 
| return_state | Boolean. Whether to return the last state in addition
to the output. Default: False. | 
| go_backwards | Boolean (default False).
IfTrue, process the input sequence backwards and return the
reversed sequence. | 
| stateful | Boolean (default: False). IfTrue, the last state
for each sample at index i in a batch will be used as initial
state for the sample of index i in the following batch. | 
| unroll | Boolean (default: False).
IfTrue, the network will be unrolled,
else a symbolic loop will be used.
Unrolling can speed-up a RNN,
although it tends to be more memory-intensive.
Unrolling is only suitable for short sequences. | 
| reset_after | GRU convention (whether to apply reset gate after or
before matrix multiplication). Falseis"before",Trueis"after"(default and cuDNN compatible). | 
| use_cudnn | Whether to use a cuDNN-backed implementation. "auto"will
attempt to use cuDNN when feasible, and will fallback to the
default implementation if not. | 
| Call arguments | 
|---|
| inputs | A 3D tensor, with shape (batch, timesteps, feature). | 
| mask | Binary tensor of shape (samples, timesteps)indicating whether
a given timestep should be masked  (optional).
An individualTrueentry indicates that the corresponding timestep
should be utilized, while aFalseentry indicates that the
corresponding timestep should be ignored. Defaults toNone. | 
| training | Python boolean indicating whether the layer should behave in
training mode or in inference mode. This argument is passed to the
cell when calling it. This is only relevant if dropoutorrecurrent_dropoutis used  (optional). Defaults toNone. | 
| initial_state | List of initial state tensors to be passed to the first
call of the cell (optional, Nonecauses creation
of zero-filled initial state tensors). Defaults toNone. | 
| Attributes | 
|---|
| activation |  | 
| bias_constraint |  | 
| bias_initializer |  | 
| bias_regularizer |  | 
| dropout |  | 
| input | Retrieves the input tensor(s) of a symbolic operation. Only returns the tensor(s) corresponding to the first time
the operation was called.
 | 
| kernel_constraint |  | 
| kernel_initializer |  | 
| kernel_regularizer |  | 
| output | Retrieves the output tensor(s) of a layer. Only returns the tensor(s) corresponding to the first time
the operation was called.
 | 
| recurrent_activation |  | 
| recurrent_constraint |  | 
| recurrent_dropout |  | 
| recurrent_initializer |  | 
| recurrent_regularizer |  | 
| reset_after |  | 
| units |  | 
| use_bias |  | 
Methods
from_config
View source
@classmethod
from_config(
    config
)
Creates a layer from its config.
This method is the reverse of get_config,
capable of instantiating the same layer from the config
dictionary. It does not handle layer connectivity
(handled by Network), nor weights (handled by set_weights).
| Args | 
|---|
| config | A Python dictionary, typically the
output of get_config. | 
| Returns | 
|---|
| A layer instance. | 
get_initial_state
View source
get_initial_state(
    batch_size
)
inner_loop
View source
inner_loop(
    sequences, initial_state, mask, training=False
)
reset_state
View source
reset_state()
reset_states
View source
reset_states()
symbolic_call
View source
symbolic_call(
    *args, **kwargs
)