View source on GitHub |
Cell class for the GRU layer.
Inherits From: Layer
, Operation
tf.keras.layers.GRUCell(
units,
activation='tanh',
recurrent_activation='sigmoid',
use_bias=True,
kernel_initializer='glorot_uniform',
recurrent_initializer='orthogonal',
bias_initializer='zeros',
kernel_regularizer=None,
recurrent_regularizer=None,
bias_regularizer=None,
kernel_constraint=None,
recurrent_constraint=None,
bias_constraint=None,
dropout=0.0,
recurrent_dropout=0.0,
reset_after=True,
seed=None,
**kwargs
)
This class processes one step within the whole time sequence input, whereas
keras.layer.GRU
processes the whole sequence.
Example:
inputs = np.random.random((32, 10, 8))
rnn = keras.layers.RNN(keras.layers.GRUCell(4))
output = rnn(inputs)
output.shape
(32, 4)
rnn = keras.layers.RNN(
keras.layers.GRUCell(4),
return_sequences=True,
return_state=True)
whole_sequence_output, final_state = rnn(inputs)
whole_sequence_output.shape
(32, 10, 4)
final_state.shape
(32, 4)
Methods
from_config
@classmethod
from_config( config )
Creates a layer from its config.
This method is the reverse of get_config
,
capable of instantiating the same layer from the config
dictionary. It does not handle layer connectivity
(handled by Network), nor weights (handled by set_weights
).
Args | |
---|---|
config
|
A Python dictionary, typically the output of get_config. |
Returns | |
---|---|
A layer instance. |
get_dropout_mask
get_dropout_mask(
step_input
)
get_initial_state
get_initial_state(
batch_size=None
)
get_recurrent_dropout_mask
get_recurrent_dropout_mask(
step_input
)
reset_dropout_mask
reset_dropout_mask()
Reset the cached dropout mask if any.
The RNN layer invokes this in the call()
method
so that the cached mask is cleared after calling cell.call()
. The
mask should be cached across all timestep within the same batch, but
shouldn't be cached between batches.
reset_recurrent_dropout_mask
reset_recurrent_dropout_mask()
symbolic_call
symbolic_call(
*args, **kwargs
)