tf.keras.layers.InputLayer

This is the class from which all layers inherit.

Inherits From: Layer, Operation

Used in the notebooks

Used in the guide Used in the tutorials

A layer is a callable object that takes as input one or more tensors and that outputs one or more tensors. It involves computation, defined in the call() method, and a state (weight variables). State can be created:

  • in __init__(), for instance via self.add_weight();
  • in the optional build() method, which is invoked by the first __call__() to the layer, and supplies the shape(s) of the input(s), which may not have been known at initialization time.

Layers are recursively composable: If you assign a Layer instance as an attribute of another Layer, the outer layer will start tracking the weights created by the inner layer. Nested layers should be instantiated in the __init__() method or build() method.

Users will just instantiate a layer and then treat it as a callable.

trainable Boolean, whether the layer's variables should be trainable.
name String name of the layer.
dtype The dtype of the layer's computations and weights. Can also be a keras.DTypePolicy, which allows the computation and weight dtype to differ. Defaults to None. None means to use keras.config.dtype_policy(), which is a float32 policy unless set to different value (via keras.config.set_dtype_policy()).

We recommend that descendants of Layer implement the following methods:

  • __init__(): Defines custom layer attributes, and creates layer weights that do not depend on input shapes, using add_weight(), or other state.
  • build(self, input_shape): This method can be used to create weights that depend on the shape(s) of the input(s), using add_weight(), or other state. __call__() will automatically build the layer (if it has not been built yet) by calling build().
  • call(self, *args, **kwargs): Called in __call__ after making sure build() has been called. call() performs the logic of applying the layer to the input arguments. Two reserved keyword arguments you can optionally use in call() are: 1. training (boolean, whether the call is in inference mode or training mode). 2. mask (boolean tensor encoding masked timesteps in the input, used e.g. in RNN layers). A typical signature for this method is call(self, inputs), and user could optionally add training and mask if the layer need them.
  • get_config(self): Returns a dictionary containing the configuration used to initialize this layer. If the keys differ from the arguments in __init__(), then override from_config(self) as well. This method is used when saving the layer or a model that contains this layer.

Examples:

Here's a basic example: a layer with two variables, w and b, that returns y = w . x + b. It shows how to implement build() and call(). Variables set as attributes of a layer are tracked as weights of the layers (in layer.weights).

class SimpleDense(Layer):
    def __init__(self, units=32):
        super().__init__()
        self.units = units

    # Create the state of the layer (weights)
    def build(self, input_shape):
        self.kernel = self.add_weight(
            shape=(input_shape[-1], self.units),
            initializer="glorot_uniform",
            trainable=True,
            name="kernel",
        )
        self.bias = self.add_weight(
            shape=(self.units,),
            initializer="zeros",
            trainable=True,
            name="bias",
        )

    # Defines the computation
    def call(self, inputs):
        return ops.matmul(inputs, self.kernel) + self.bias

# Instantiates the layer.
linear_layer = SimpleDense(4)

# This will also call `build(input_shape)` and create the weights.
y = linear_layer(ops.ones((2, 2)))
assert len(linear_layer.weights) == 2

# These weights are trainable, so they're listed in `trainable_weights`:
assert len(linear_layer.trainable_weights) == 2

Besides trainable weights, updated via backpropagation during training, layers can also have non-trainable weights. These weights are meant to be updated manually during call(). Here's a example layer that computes the running sum of its inputs:

class ComputeSum(Layer):

  def __init__(self, input_dim):
      super(ComputeSum, self).__init__()
      # Create a non-trainable weight.
      self.total = self.add_weight(
        shape=(),
        initializer="zeros",
        trainable=False,
        name="total",
      )

  def call(self, inputs):
      self.total.assign(self.total + ops.sum(inputs))
      return self.total

my_sum = ComputeSum(2)
x = ops.ones((2, 2))
y = my_sum(x)

assert my_sum.weights == [my_sum.total]
assert my_sum.non_trainable_weights == [my_sum.total]
assert my_sum.trainable_weights == []

name The name of the layer (string).
dtype Dtype of the layer's weights. Alias of layer.variable_dtype.
variable_dtype Dtype of the layer's weights.
compute_dtype The dtype of the layer's computations. Layers automatically cast inputs to this dtype, which causes the computations and output to also be in this dtype. When mixed precision is used with a keras.DTypePolicy, this will be different than variable_dtype.
trainable_weights List of variables to be included in backprop.
non_trainable_weights List of variables that should not be included in backprop.
weights The concatenation of the lists trainable_weights and non_trainable_weights (in this order).
trainable Whether the layer should be trained (boolean), i.e. whether its potentially-trainable weights should be returned as part of layer.trainable_weights.
input_spec Optional (list of) InputSpec object(s) specifying the constraints on inputs that can be accepted by the layer.
input Retrieves the input tensor(s) of a symbolic operation.

Only returns the tensor(s) corresponding to the first time the operation was called.

output Retrieves the output tensor(s) of a layer.

Only returns the tensor(s) corresponding to the first time the operation was called.

Methods

from_config

View source

Creates a layer from its config.

This method is the reverse of get_config, capable of instantiating the same layer from the config dictionary. It does not handle layer connectivity (handled by Network), nor weights (handled by set_weights).

Args
config A Python dictionary, typically the output of get_config.

Returns
A layer instance.

symbolic_call

View source