tf.keras.losses.Tversky
Stay organized with collections
Save and categorize content based on your preferences.
Computes the Tversky loss value between y_true
and y_pred
.
Inherits From: Loss
tf.keras.losses.Tversky(
alpha=0.5,
beta=0.5,
reduction='sum_over_batch_size',
name='tversky'
)
This loss function is weighted by the alpha and beta coefficients
that penalize false positives and false negatives.
With alpha=0.5
and beta=0.5
, the loss value becomes equivalent to
Dice Loss.
Args |
y_true
|
tensor of true targets.
|
y_pred
|
tensor of predicted targets.
|
alpha
|
coefficient controlling incidence of false positives.
|
beta
|
coefficient controlling incidence of false negatives.
|
Returns |
Tversky loss value.
|
Reference:
Methods
call
View source
call(
y_true, y_pred
)
from_config
View source
@classmethod
from_config(
config
)
get_config
View source
get_config()
__call__
View source
__call__(
y_true, y_pred, sample_weight=None
)
Call self as a function.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-06-07 UTC.
[null,null,["Last updated 2024-06-07 UTC."],[],[],null,["# tf.keras.losses.Tversky\n\n\u003cbr /\u003e\n\n|-----------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/losses/losses.py#L2013-L2060) |\n\nComputes the Tversky loss value between `y_true` and `y_pred`.\n\nInherits From: [`Loss`](../../../tf/keras/Loss) \n\n tf.keras.losses.Tversky(\n alpha=0.5,\n beta=0.5,\n reduction='sum_over_batch_size',\n name='tversky'\n )\n\nThis loss function is weighted by the alpha and beta coefficients\nthat penalize false positives and false negatives.\n\nWith `alpha=0.5` and `beta=0.5`, the loss value becomes equivalent to\nDice Loss.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|----------|-------------------------------------------------------|\n| `y_true` | tensor of true targets. |\n| `y_pred` | tensor of predicted targets. |\n| `alpha` | coefficient controlling incidence of false positives. |\n| `beta` | coefficient controlling incidence of false negatives. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| Tversky loss value. ||\n\n\u003cbr /\u003e\n\n#### Reference:\n\n- [Salehi et al., 2017](https://arxiv.org/abs/1706.05721)\n\nMethods\n-------\n\n### `call`\n\n[View source](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/losses/losses.py#L20-L22) \n\n call(\n y_true, y_pred\n )\n\n### `from_config`\n\n[View source](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/losses/losses.py#L30-L34) \n\n @classmethod\n from_config(\n config\n )\n\n### `get_config`\n\n[View source](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/losses/losses.py#L2054-L2060) \n\n get_config()\n\n### `__call__`\n\n[View source](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/losses/loss.py#L32-L61) \n\n __call__(\n y_true, y_pred, sample_weight=None\n )\n\nCall self as a function."]]