tf.keras.metrics.Accuracy

Calculates how often predictions equal labels.

Inherits From: MeanMetricWrapper, Mean, Metric

Used in the notebooks

Used in the guide Used in the tutorials

This metric creates two local variables, total and count that are used to compute the frequency with which y_pred matches y_true. This frequency is ultimately returned as binary accuracy: an idempotent operation that simply divides total by count.

If sample_weight is None, weights default to 1. Use sample_weight of 0 to mask values.

name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.

Examples:

m = keras.metrics.Accuracy()
m.update_state([[1], [2], [3], [4]], [[0], [2], [3], [4]])
m.result()
0.75
m.reset_state()
m.update_state([[1], [2], [3], [4]], [[0], [2], [3], [4]],
               sample_weight=[1, 1, 0, 0])
m.result()
0.5

Usage with compile() API:

model.compile(optimizer='sgd',
              loss='binary_crossentropy',
              metrics=[keras.metrics.Accuracy()])

dtype

variables

Methods

add_variable

View source

add_weight

View source

from_config

View source

get_config

View source

Return the serializable config of the metric.

reset_state

View source

Reset all of the metric state variables.

This function is called between epochs/steps, when a metric is evaluated during training.

result

View source

Compute the current metric value.

Returns
A scalar tensor, or a dictionary of scalar tensors.

stateless_reset_state

View source

stateless_result

View source

stateless_update_state

View source

update_state

View source

Accumulate statistics for the metric.

__call__

View source

Call self as a function.