|  View source on GitHub | 
Calculates how often predictions equal labels.
Inherits From: MeanMetricWrapper, Mean, Metric
tf.keras.metrics.Accuracy(
    name='accuracy', dtype=None
)
Used in the notebooks
| Used in the guide | Used in the tutorials | 
|---|---|
This metric creates two local variables, total and count that are used
to compute the frequency with which y_pred matches y_true. This
frequency is ultimately returned as binary accuracy: an idempotent
operation that simply divides total by count.
If sample_weight is None, weights default to 1.
Use sample_weight of 0 to mask values.
| Args | |
|---|---|
| name | (Optional) string name of the metric instance. | 
| dtype | (Optional) data type of the metric result. | 
Examples:
m = keras.metrics.Accuracy()m.update_state([[1], [2], [3], [4]], [[0], [2], [3], [4]])m.result()0.75
m.reset_state()m.update_state([[1], [2], [3], [4]], [[0], [2], [3], [4]],sample_weight=[1, 1, 0, 0])m.result()0.5
Usage with compile() API:
model.compile(optimizer='sgd',
              loss='binary_crossentropy',
              metrics=[keras.metrics.Accuracy()])
| Attributes | |
|---|---|
| dtype | |
| variables | |
Methods
add_variable
add_variable(
    shape, initializer, dtype=None, aggregation='sum', name=None
)
add_weight
add_weight(
    shape=(), initializer=None, dtype=None, name=None
)
from_config
@classmethodfrom_config( config )
get_config
get_config()
Return the serializable config of the metric.
reset_state
reset_state()
Reset all of the metric state variables.
This function is called between epochs/steps, when a metric is evaluated during training.
result
result()
Compute the current metric value.
| Returns | |
|---|---|
| A scalar tensor, or a dictionary of scalar tensors. | 
stateless_reset_state
stateless_reset_state()
stateless_result
stateless_result(
    metric_variables
)
stateless_update_state
stateless_update_state(
    metric_variables, *args, **kwargs
)
update_state
update_state(
    y_true, y_pred, sample_weight=None
)
Accumulate statistics for the metric.
__call__
__call__(
    *args, **kwargs
)
Call self as a function.