|  View source on GitHub | 
Computes the mean Intersection-Over-Union metric.
tf.keras.metrics.MeanIoU(
    num_classes,
    name=None,
    dtype=None,
    ignore_class=None,
    sparse_y_true=True,
    sparse_y_pred=True,
    axis=-1
)
Formula:
iou = true_positives / (true_positives + false_positives + false_negatives)
Intersection-Over-Union is a common evaluation metric for semantic image segmentation.
To compute IoUs, the predictions are accumulated in a confusion matrix,
weighted by sample_weight and the metric is then calculated from it.
If sample_weight is None, weights default to 1.
Use sample_weight of 0 to mask values.
Note that this class first computes IoUs for all individual classes, then returns the mean of these values.
Example:
Example:
# cm = [[1, 1],# [1, 1]]# sum_row = [2, 2], sum_col = [2, 2], true_positives = [1, 1]# iou = true_positives / (sum_row + sum_col - true_positives))# result = (1 / (2 + 2 - 1) + 1 / (2 + 2 - 1)) / 2 = 0.33m = keras.metrics.MeanIoU(num_classes=2)m.update_state([0, 0, 1, 1], [0, 1, 0, 1])m.result()0.33333334
m.reset_state()m.update_state([0, 0, 1, 1], [0, 1, 0, 1],sample_weight=[0.3, 0.3, 0.3, 0.1])m.result().numpy()0.23809525
Usage with compile() API:
model.compile(
    optimizer='sgd',
    loss='mse',
    metrics=[keras.metrics.MeanIoU(num_classes=2)])
| Attributes | |
|---|---|
| dtype | |
| variables | |
Methods
add_variable
add_variable(
    shape, initializer, dtype=None, aggregation='sum', name=None
)
add_weight
add_weight(
    shape=(), initializer=None, dtype=None, name=None
)
from_config
@classmethodfrom_config( config )
get_config
get_config()
Return the serializable config of the metric.
reset_state
reset_state()
Reset all of the metric state variables.
This function is called between epochs/steps, when a metric is evaluated during training.
result
result()
Compute the intersection-over-union via the confusion matrix.
stateless_reset_state
stateless_reset_state()
stateless_result
stateless_result(
    metric_variables
)
stateless_update_state
stateless_update_state(
    metric_variables, *args, **kwargs
)
update_state
update_state(
    y_true, y_pred, sample_weight=None
)
Accumulates the confusion matrix statistics.
| Args | |
|---|---|
| y_true | The ground truth values. | 
| y_pred | The predicted values. | 
| sample_weight | Optional weighting of each example. Can
be a Tensorwhose rank is either 0, or the same asy_true,
and must be broadcastable toy_true. Defaults to1. | 
| Returns | |
|---|---|
| Update op. | 
__call__
__call__(
    *args, **kwargs
)
Call self as a function.