tf.keras.losses.squared_hinge

Computes the squared hinge loss between y_true & y_pred.

Formula:

loss = mean(square(maximum(1 - y_true * y_pred, 0)), axis=-1)

y_true The ground truth values. y_true values are expected to be -1 or 1. If binary (0 or 1) labels are provided we will convert them to -1 or 1 with shape = [batch_size, d0, .. dN].
y_pred The predicted values with shape = [batch_size, d0, .. dN].

Squared hinge loss values with shape = [batch_size, d0, .. dN-1].

Example:

y_true = np.random.choice([-1, 1], size=(2, 3))
y_pred = np.random.random(size=(2, 3))
loss = keras.losses.squared_hinge(y_true, y_pred)