Computes Rectified Linear 6: min(max(features, 0), 6)
.
tf.nn.relu6(
features, name=None
)
In comparison with tf.nn.relu
, relu6 activation functions have shown to
empirically perform better under low-precision conditions (e.g. fixed point
inference) by encouraging the model to learn sparse features earlier.
Source: Convolutional Deep Belief Networks on CIFAR-10: Krizhevsky et al.,
2010.
For example:
x = tf.constant([-3.0, -1.0, 0.0, 6.0, 10.0], dtype=tf.float32)
y = tf.nn.relu6(x)
y.numpy()
array([0., 0., 0., 6., 6.], dtype=float32)
Args |
features
|
A Tensor with type float , double , int32 , int64 , uint8 ,
int16 , or int8 .
|
name
|
A name for the operation (optional).
|
Returns |
A Tensor with the same type as features .
|
References |
Convolutional Deep Belief Networks on CIFAR-10:
Krizhevsky et al., 2010
(pdf)
|