tf.ones_like
Stay organized with collections
Save and categorize content based on your preferences.
Creates a tensor of all ones that has the same shape as the input.
tf.ones_like(
input, dtype=None, name=None, layout=None
)
Used in the notebooks
Used in the guide |
Used in the tutorials |
|
|
See also tf.ones
.
Given a single tensor (tensor
), this operation returns a tensor of the
same type and shape as tensor
with all elements set to 1. Optionally,
you can use dtype
to specify a new type for the returned tensor.
For example:
tensor = tf.constant([[1, 2, 3], [4, 5, 6]])
tf.ones_like(tensor)
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
array([[1, 1, 1],
[1, 1, 1]], dtype=int32)>
Note that the layout of the input tensor is not preserved if the op
is used inside tf.function. To obtain a tensor with the same layout as the
input, chain the returned value to a dtensor.relayout_like
.
Args |
input
|
A Tensor .
|
dtype
|
A type for the returned Tensor . Must be float16 , float32 ,
float64 , int8 , uint8 , int16 , uint16 , int32 , int64 ,
complex64 , complex128 , bool or string .
|
name
|
A name for the operation (optional).
|
layout
|
Optional, tf.experimental.dtensor.Layout . If provided, the result
is a DTensor with the
provided layout.
|
Returns |
A Tensor with all elements set to one.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[null,null,["Last updated 2024-04-26 UTC."],[],[],null,["# tf.ones_like\n\n\u003cbr /\u003e\n\n|-------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.16.1/tensorflow/python/ops/array_ops.py#L2815-L2866) |\n\nCreates a tensor of all ones that has the same shape as the input. \n\n tf.ones_like(\n input, dtype=None, name=None, layout=None\n )\n\n### Used in the notebooks\n\n| Used in the guide | Used in the tutorials |\n|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| - [Extension types](https://www.tensorflow.org/guide/extension_type) - [Validating correctness \\& numerical equivalence](https://www.tensorflow.org/guide/migrate/validate_correctness) | - [CycleGAN](https://www.tensorflow.org/tutorials/generative/cyclegan) - [Deep Convolutional Generative Adversarial Network](https://www.tensorflow.org/tutorials/generative/dcgan) - [pix2pix: Image-to-image translation with a conditional GAN](https://www.tensorflow.org/tutorials/generative/pix2pix) - [Multilevel Modeling Primer in TensorFlow Probability](https://www.tensorflow.org/probability/examples/Multilevel_Modeling_Primer) - [Research tools](https://www.tensorflow.org/quantum/tutorials/research_tools) |\n\nSee also [`tf.ones`](../tf/ones).\n\nGiven a single tensor (`tensor`), this operation returns a tensor of the\nsame type and shape as `tensor` with all elements set to 1. Optionally,\nyou can use `dtype` to specify a new type for the returned tensor.\n\n#### For example:\n\n tensor = tf.constant([[1, 2, 3], [4, 5, 6]])\n tf.ones_like(tensor)\n \u003ctf.Tensor: shape=(2, 3), dtype=int32, numpy=\n array([[1, 1, 1],\n [1, 1, 1]], dtype=int32)\u003e\n\nNote that the layout of the input tensor is not preserved if the op\nis used inside tf.function. To obtain a tensor with the same layout as the\ninput, chain the returned value to a [`dtensor.relayout_like`](../tf/experimental/dtensor/relayout_like).\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `input` | A `Tensor`. |\n| `dtype` | A type for the returned `Tensor`. Must be `float16`, `float32`, `float64`, `int8`, `uint8`, `int16`, `uint16`, `int32`, `int64`, `complex64`, `complex128`, `bool` or `string`. |\n| `name` | A name for the operation (optional). |\n| `layout` | Optional, [`tf.experimental.dtensor.Layout`](../tf/experimental/dtensor/Layout). If provided, the result is a [DTensor](https://www.tensorflow.org/guide/dtensor_overview) with the provided layout. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor` with all elements set to one. ||\n\n\u003cbr /\u003e"]]