Stacks a list of rank-R
tensors into one rank-(R+1)
tensor.
View aliases
Compat aliases for migration
See Migration guide for more details.
tf.stack(
values, axis=0, name='stack'
)
Used in the notebooks
Used in the guide | Used in the tutorials |
---|---|
See also tf.concat
, tf.tile
, tf.repeat
.
Packs the list of tensors in values
into a tensor with rank one higher than
each tensor in values
, by packing them along the axis
dimension.
Given a list of length N
of tensors of shape (A, B, C)
;
if axis == 0
then the output
tensor will have the shape (N, A, B, C)
.
if axis == 1
then the output
tensor will have the shape (A, N, B, C)
.
Etc.
For example:
x = tf.constant([1, 4])
y = tf.constant([2, 5])
z = tf.constant([3, 6])
tf.stack([x, y, z])
<tf.Tensor: shape=(3, 2), dtype=int32, numpy=
array([[1, 4],
[2, 5],
[3, 6]], dtype=int32)>
tf.stack([x, y, z], axis=1)
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
array([[1, 2, 3],
[4, 5, 6]], dtype=int32)>
This is the opposite of unstack. The numpy equivalent is np.stack
np.array_equal(np.stack([x, y, z]), tf.stack([x, y, z]))
True