|  View source on GitHub | 
Represents an iterator of a tf.data.Dataset.
tf.data.Iterator is the primary mechanism for enumerating elements of a
tf.data.Dataset. It supports the Python Iterator protocol, which means
it can be iterated over using a for-loop:
dataset = tf.data.Dataset.range(2)for element in dataset:print(element)tf.Tensor(0, shape=(), dtype=int64)tf.Tensor(1, shape=(), dtype=int64)
or by fetching individual elements explicitly via get_next():
dataset = tf.data.Dataset.range(2)iterator = iter(dataset)print(iterator.get_next())tf.Tensor(0, shape=(), dtype=int64)print(iterator.get_next())tf.Tensor(1, shape=(), dtype=int64)
In addition, non-raising iteration is supported via get_next_as_optional(),
which returns the next element (if available) wrapped in a
tf.experimental.Optional.
dataset = tf.data.Dataset.from_tensors(42)iterator = iter(dataset)optional = iterator.get_next_as_optional()print(optional.has_value())tf.Tensor(True, shape=(), dtype=bool)optional = iterator.get_next_as_optional()print(optional.has_value())tf.Tensor(False, shape=(), dtype=bool)
| Attributes | |
|---|---|
| element_spec | The type specification of an element of this iterator. 
 For more information, read this guide. | 
Methods
get_next
@abc.abstractmethodget_next()
Returns the next element.
dataset = tf.data.Dataset.from_tensors(42)iterator = iter(dataset)print(iterator.get_next())tf.Tensor(42, shape=(), dtype=int32)
| Returns | |
|---|---|
| A (nested) structure of values matching tf.data.Iterator.element_spec. | 
| Raises | |
|---|---|
| tf.errors.OutOfRangeError: If the end of the iterator has been reached. | 
get_next_as_optional
@abc.abstractmethodget_next_as_optional()
Returns the next element wrapped in tf.experimental.Optional.
If the iterator has reached the end of the sequence, the returned
tf.experimental.Optional will have no value.
dataset = tf.data.Dataset.from_tensors(42)iterator = iter(dataset)optional = iterator.get_next_as_optional()print(optional.has_value())tf.Tensor(True, shape=(), dtype=bool)print(optional.get_value())tf.Tensor(42, shape=(), dtype=int32)optional = iterator.get_next_as_optional()print(optional.has_value())tf.Tensor(False, shape=(), dtype=bool)
| Returns | |
|---|---|
| A tf.experimental.Optionalobject representing the next element. | 
__iter__
__iter__()