tf.image.transpose
Stay organized with collections
Save and categorize content based on your preferences.
Transpose image(s) by swapping the height and width dimension.
tf.image.transpose(
image, name=None
)
Usage Example:
x = [[[1.0, 2.0, 3.0],
[4.0, 5.0, 6.0]],
[[7.0, 8.0, 9.0],
[10.0, 11.0, 12.0]]]
tf.image.transpose(x)
<tf.Tensor: shape=(2, 2, 3), dtype=float32, numpy=
array([[[ 1., 2., 3.],
[ 7., 8., 9.]],
[[ 4., 5., 6.],
[10., 11., 12.]]], dtype=float32)>
Args |
image
|
4-D Tensor of shape [batch, height, width, channels] or 3-D Tensor
of shape [height, width, channels] .
|
name
|
A name for this operation (optional).
|
Returns |
If image was 4-D, a 4-D float Tensor of shape
[batch, width, height, channels]
If image was 3-D, a 3-D float Tensor of shape
[width, height, channels]
|
Raises |
ValueError
|
if the shape of image not supported.
|
Usage Example:
image = [[[1, 2], [3, 4]],
[[5, 6], [7, 8]],
[[9, 10], [11, 12]]]
image = tf.constant(image)
tf.image.transpose(image)
<tf.Tensor: shape=(2, 3, 2), dtype=int32, numpy=
array([[[ 1, 2],
[ 5, 6],
[ 9, 10]],
[[ 3, 4],
[ 7, 8],
[11, 12]]], dtype=int32)>
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[null,null,["Last updated 2024-04-26 UTC."],[],[],null,["# tf.image.transpose\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.16.1/tensorflow/python/ops/image_ops_impl.py#L788-L855) |\n\nTranspose image(s) by swapping the height and width dimension.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.image.transpose`](https://www.tensorflow.org/api_docs/python/tf/image/transpose), [`tf.compat.v1.image.transpose_image`](https://www.tensorflow.org/api_docs/python/tf/image/transpose)\n\n\u003cbr /\u003e\n\n tf.image.transpose(\n image, name=None\n )\n\n#### Usage Example:\n\n x = [[[1.0, 2.0, 3.0],\n [4.0, 5.0, 6.0]],\n [[7.0, 8.0, 9.0],\n [10.0, 11.0, 12.0]]]\n tf.image.transpose(x)\n \u003ctf.Tensor: shape=(2, 2, 3), dtype=float32, numpy=\n array([[[ 1., 2., 3.],\n [ 7., 8., 9.]],\n [[ 4., 5., 6.],\n [10., 11., 12.]]], dtype=float32)\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------|------------------------------------------------------------------------------------------------------------|\n| `image` | 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor of shape `[height, width, channels]`. |\n| `name` | A name for this operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| If `image` was 4-D, a 4-D float Tensor of shape `[batch, width, height, channels]` If `image` was 3-D, a 3-D float Tensor of shape `[width, height, channels]` ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|----------------------------------------|\n| `ValueError` | if the shape of `image` not supported. |\n\n\u003cbr /\u003e\n\n#### Usage Example:\n\n image = [[[1, 2], [3, 4]],\n [[5, 6], [7, 8]],\n [[9, 10], [11, 12]]]\n image = tf.constant(image)\n tf.image.transpose(image)\n \u003ctf.Tensor: shape=(2, 3, 2), dtype=int32, numpy=\n array([[[ 1, 2],\n [ 5, 6],\n [ 9, 10]],\n [[ 3, 4],\n [ 7, 8],\n [11, 12]]], dtype=int32)\u003e"]]