View source on GitHub |
Base class for weight constraints.
A Constraint
instance works like a stateless function.
Users who subclass this
class should override the __call__()
method, which takes a single
weight parameter and return a projected version of that parameter
(e.g. normalized or clipped). Constraints can be used with various Keras
layers via the kernel_constraint
or bias_constraint
arguments.
Here's a simple example of a non-negative weight constraint:
class NonNegative(keras.constraints.Constraint):
def __call__(self, w):
return w * ops.cast(ops.greater_equal(w, 0.), dtype=w.dtype)
weight = ops.convert_to_tensor((-1.0, 1.0))
NonNegative()(weight)
[0., 1.]
Usage in a layer:
keras.layers.Dense(4, kernel_constraint=NonNegative())
Methods
from_config
@classmethod
from_config( config )
Instantiates a weight constraint from a configuration dictionary.
Example:
constraint = UnitNorm()
config = constraint.get_config()
constraint = UnitNorm.from_config(config)
Args | |
---|---|
config
|
A Python dictionary, the output of get_config() .
|
Returns | |
---|---|
A keras.constraints.Constraint instance.
|
get_config
get_config()
Returns a Python dict of the object config.
A constraint config is a Python dictionary (JSON-serializable) that can be used to reinstantiate the same object.
Returns | |
---|---|
Python dict containing the configuration of the constraint object. |
__call__
__call__(
w
)
Applies the constraint to the input weight variable.
By default, the inputs weight variable is not modified. Users should override this method to implement their own projection function.
Args | |
---|---|
w
|
Input weight variable. |
Returns | |
---|---|
Projected variable (by default, returns unmodified inputs). |