View source on GitHub
|
Initializer that adapts its scale to the shape of its input tensors.
Inherits From: Initializer
tf.keras.initializers.VarianceScaling(
scale=1.0,
mode='fan_in',
distribution='truncated_normal',
seed=None
)
Used in the notebooks
| Used in the tutorials |
|---|
With distribution="truncated_normal" or "untruncated_normal", samples are
drawn from a truncated/untruncated normal distribution with a mean of zero
and a standard deviation (after truncation, if used) stddev = sqrt(scale /
n), where n is:
- number of input units in the weight tensor, if
mode="fan_in" - number of output units, if
mode="fan_out" - average of the numbers of input and output units, if
mode="fan_avg"
With distribution="uniform", samples are drawn from a uniform distribution
within [-limit, limit], where limit = sqrt(3 * scale / n).
Examples:
# Standalone usage:initializer = VarianceScaling(scale=0.1, mode='fan_in', distribution='uniform')values = initializer(shape=(2, 2))
# Usage in a Keras layer:initializer = VarianceScaling(scale=0.1, mode='fan_in', distribution='uniform')layer = Dense(3, kernel_initializer=initializer)
Methods
clone
clone()
from_config
@classmethodfrom_config( config )
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
| Args | |
|---|---|
config
|
A Python dictionary, the output of get_config().
|
| Returns | |
|---|---|
An Initializer instance.
|
get_config
get_config()
Returns the initializer's configuration as a JSON-serializable dict.
| Returns | |
|---|---|
| A JSON-serializable Python dict. |
__call__
__call__(
shape, dtype=None
)
Returns a tensor object initialized as specified by the initializer.
| Args | |
|---|---|
shape
|
Shape of the tensor. |
dtype
|
Optional dtype of the tensor. |
View source on GitHub