tf.keras.losses.MSLE
Computes the mean squared logarithmic error between y_true
& y_pred
.
tf.keras.losses.MSLE(
y_true, y_pred
)
loss = mean(square(log(y_true + 1) - log(y_pred + 1)), axis=-1)
Note that y_pred
and y_true
cannot be less or equal to 0. Negative
values and 0 values will be replaced with keras.backend.epsilon()
(default to 1e-7
).
Args |
y_true
|
Ground truth values with shape = [batch_size, d0, .. dN] .
|
y_pred
|
The predicted values with shape = [batch_size, d0, .. dN] .
|
Returns |
Mean squared logarithmic error values with shape = [batch_size, d0, ..
dN-1] .
|
Example:
y_true = np.random.randint(0, 2, size=(2, 3))
y_pred = np.random.random(size=(2, 3))
loss = keras.losses.mean_squared_logarithmic_error(y_true, y_pred)
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-06-07 UTC.
[null,null,["Last updated 2024-06-07 UTC."],[],[]]