Computes the Poisson loss between y_true and y_pred.
tf.keras.losses.poisson(
y_true, y_pred
)
loss = y_pred - y_true * log(y_pred)
Args |
y_true
|
Ground truth values. shape = [batch_size, d0, .. dN] .
|
y_pred
|
The predicted values. shape = [batch_size, d0, .. dN] .
|
Returns |
Poisson loss values with shape = [batch_size, d0, .. dN-1] .
|
Example:
y_true = np.random.randint(0, 2, size=(2, 3))
y_pred = np.random.random(size=(2, 3))
loss = keras.losses.poisson(y_true, y_pred)
assert loss.shape == (2,)
y_pred = y_pred + 1e-7
assert np.allclose(
loss, np.mean(y_pred - y_true * np.log(y_pred), axis=-1),
atol=1e-5)