tf.keras.ops.correlate
Stay organized with collections
Save and categorize content based on your preferences.
Compute the cross-correlation of two 1-dimensional tensors.
tf.keras.ops.correlate(
x1, x2, mode='valid'
)
Args |
x1
|
First 1-dimensional input tensor of length M.
|
x2
|
Second 1-dimensional input tensor of length N.
|
mode
|
Either valid , same or full .
By default the mode is set to valid , which returns
an output of length max(M, N) - min(M, N) + 1.
same returns an output of length max(M, N).
full mode returns the convolution at each point of
overlap, with an output length of N+M-1
|
Returns |
Output tensor, cross-correlation of x1 and x2 .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-06-07 UTC.
[null,null,["Last updated 2024-06-07 UTC."],[],[],null,["# tf.keras.ops.correlate\n\n\u003cbr /\u003e\n\n|-------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/ops/numpy.py#L6079-L6098) |\n\nCompute the cross-correlation of two 1-dimensional tensors.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.keras.ops.numpy.correlate`](https://www.tensorflow.org/api_docs/python/tf/keras/ops/correlate)\n\n\u003cbr /\u003e\n\n tf.keras.ops.correlate(\n x1, x2, mode='valid'\n )\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `x1` | First 1-dimensional input tensor of length M. |\n| `x2` | Second 1-dimensional input tensor of length N. |\n| `mode` | Either `valid`, `same` or `full`. By default the mode is set to `valid`, which returns an output of length max(M, N) - min(M, N) + 1. `same` returns an output of length max(M, N). `full` mode returns the convolution at each point of overlap, with an output length of N+M-1 |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| Output tensor, cross-correlation of `x1` and `x2`. ||\n\n\u003cbr /\u003e"]]