|  View source on GitHub | 
Exposes custom classes/functions to Keras deserialization internals.
tf.keras.utils.CustomObjectScope(
    custom_objects
)
Under a scope with custom_object_scope(objects_dict), Keras methods such
as keras.models.load_model() or
keras.models.model_from_config() will be able to deserialize any
custom object referenced by a saved config (e.g. a custom layer or metric).
Example:
Consider a custom regularizer my_regularizer:
layer = Dense(3, kernel_regularizer=my_regularizer)
# Config contains a reference to `my_regularizer`
config = layer.get_config()
...
# Later:
with custom_object_scope({'my_regularizer': my_regularizer}):
    layer = Dense.from_config(config)
| Args | |
|---|---|
| custom_objects | Dictionary of {str: object}pairs,
where thestrkey is the object name. | 
Methods
__enter__
__enter__()
__exit__
__exit__(
    *args, **kwargs
)