Computes the minimum along segments of a tensor.
tf.math.unsorted_segment_min(
data: Annotated[Any, tf.raw_ops.Any
],
segment_ids: Annotated[Any, tf.raw_ops.Any
],
num_segments: Annotated[Any, tf.raw_ops.Any
],
name=None
) -> Annotated[Any, tf.raw_ops.Any
]
Read the section on segmentation for an explanation of segments.
This operator is similar to tf.math.unsorted_segment_sum
,
Instead of computing the sum over segments, it computes the minimum such that:
\(output_i = \min_{j...} data_[j...]\) where min is over tuples j...
such
that segment_ids[j...] == i
.
If the minimum is empty for a given segment ID i
, it outputs the largest
possible value for the specific numeric type,
output[i] = numeric_limits<T>::max()
.
For example:
c = tf.constant([[1,2,3,4], [5,6,7,8], [4,3,2,1]])
tf.math.unsorted_segment_min(c, tf.constant([0, 1, 0]), num_segments=2).numpy()
array([[1, 2, 2, 1],
[5, 6, 7, 8]], dtype=int32)
If the given segment ID i
is negative, then the corresponding value is
dropped, and will not be included in the result.
Returns | |
---|---|
A Tensor . Has the same type as data .
|