View source on GitHub
|
Multiplies matrix a by matrix b, producing a * b.
tf.linalg.matmul(
a,
b,
transpose_a=False,
transpose_b=False,
adjoint_a=False,
adjoint_b=False,
a_is_sparse=False,
b_is_sparse=False,
output_type=None,
grad_a=False,
grad_b=False,
name=None
)
Used in the notebooks
| Used in the guide | Used in the tutorials |
|---|---|
The inputs must, following any transpositions, be tensors of rank >= 2 where the inner 2 dimensions specify valid matrix multiplication dimensions, and any further outer dimensions specify matching batch size.
Both matrices must be of the same type. The supported types are:
bfloat16, float16, float32, float64, int32, int64,
complex64, complex128.
Either matrix can be transposed or adjointed (conjugated and transposed) on
the fly by setting one of the corresponding flag to True. These are False
by default.
If one or both of the matrices contain a lot of zeros, a more efficient
multiplication algorithm can be used by setting the corresponding
a_is_sparse or b_is_sparse flag to True. These are False by default.
This optimization is only available for plain matrices (rank-2 tensors) with
datatypes bfloat16 or float32.
A simple 2-D tensor matrix multiplication:
a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])a # 2-D tensor<tf.Tensor: shape=(2, 3), dtype=int32, numpy=array([[1, 2, 3],[4, 5, 6]], dtype=int32)>b = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2])b # 2-D tensor<tf.Tensor: shape=(3, 2), dtype=int32, numpy=array([[ 7, 8],[ 9, 10],[11, 12]], dtype=int32)>c = tf.matmul(a, b)c # `a` * `b`<tf.Tensor: shape=(2, 2), dtype=int32, numpy=array([[ 58, 64],[139, 154]], dtype=int32)>
A batch matrix multiplication with batch shape [2]:
a = tf.constant(np.arange(1, 13, dtype=np.int32), shape=[2, 2, 3])a # 3-D tensor<tf.Tensor: shape=(2, 2, 3), dtype=int32, numpy=array([[[ 1, 2, 3],[ 4, 5, 6]],[[ 7, 8, 9],[10, 11, 12]]], dtype=int32)>b = tf.constant(np.arange(13, 25, dtype=np.int32), shape=[2, 3, 2])b # 3-D tensor<tf.Tensor: shape=(2, 3, 2), dtype=int32, numpy=array([[[13, 14],[15, 16],[17, 18]],[[19, 20],[21, 22],[23, 24]]], dtype=int32)>c = tf.matmul(a, b)c # `a` * `b`<tf.Tensor: shape=(2, 2, 2), dtype=int32, numpy=array([[[ 94, 100],[229, 244]],[[508, 532],[697, 730]]], dtype=int32)>
Since python >= 3.5 the @ operator is supported
(see PEP 465). In TensorFlow,
it simply calls the tf.matmul() function, so the following lines are
equivalent:
d = a @ b @ [[10], [11]]d = tf.matmul(tf.matmul(a, b), [[10], [11]])
Args | |
|---|---|
a
|
tf.Tensor of type float16, float32, float64, int32,
complex64, complex128 and rank > 1.
|
b
|
tf.Tensor with same type and rank as a.
|
transpose_a
|
If True, a is transposed before multiplication.
|
transpose_b
|
If True, b is transposed before multiplication.
|
adjoint_a
|
If True, a is conjugated and transposed before
multiplication.
|
adjoint_b
|
If True, b is conjugated and transposed before
multiplication.
|
a_is_sparse
|
If True, a is treated as a sparse matrix. Notice, this
does not support tf.sparse.SparseTensor, it just makes optimizations
that assume most values in a are zero. See
tf.sparse.sparse_dense_matmul for some support for
tf.sparse.SparseTensor multiplication.
|
b_is_sparse
|
If True, b is treated as a sparse matrix. Notice, this
does not support tf.sparse.SparseTensor, it just makes optimizations
that assume most values in b are zero. See
tf.sparse.sparse_dense_matmul for some support for
tf.sparse.SparseTensor multiplication.
|
output_type
|
The output datatype if needed. Defaults to None in which case the output_type is the same as input type. Currently only works when input tensors are type (u)int8 and output_type can be int32. |
grad_a
|
Set it to True to hint that Tensor a is for the backward pass.
|
grad_b
|
Set it to True to hint that Tensor b is for the backward pass.
|
name
|
Name for the operation (optional). |
Returns | |
|---|---|
A tf.Tensor of the same type as a and b where each inner-most matrix
is the product of the corresponding matrices in a and b, e.g. if all
transpose or adjoint attributes are False:
|
|
Note
|
This is matrix product, not element-wise product. |
View source on GitHub